当前位置: 首页 > news >正文

Langchain 的 ConversationSummaryBufferMemory

Langchain 的 ConversationSummaryBufferMemory

ConversationSummaryBufferMemory 在内存中保留最近交互的缓冲区,但不仅仅是完全刷新旧的交互,而是将它们编译成摘要并使用两者。但与之前的实现不同的是,它使用令牌长度而不是交互次数来确定何时刷新交互。

我们首先来了解一下如何使用这些实用程序,

示例代码,

from langchain.memory import ConversationSummaryBufferMemory
from langchain.llms import OpenAIllm = OpenAI()
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=40, return_messages=True
)
memory.save_context({"input": "嗨"}, {"output": "最近怎么样?"})
memory.save_context({"input": "没什么特别的,你呢?"}, {"output": "没什么特别的。"})
memory.load_memory_variables({})

输出结果,

{'history': [SystemMessage(content='\nThe human and AI are engaging in conversation. The human greets the AI and the AI asks how the human is doing.', additional_kwargs={}),HumanMessage(content='没什么特别的,你呢?', additional_kwargs={}, example=False),AIMessage(content='没什么特别的。', additional_kwargs={}, example=False)]}

示例代码,

from langchain.chains import ConversationChainconversation_with_summary = ConversationChain(llm=llm,# We set a very low max_token_limit for the purposes of testing.memory=ConversationSummaryBufferMemory(llm=OpenAI(), max_token_limit=250),verbose=True,
)
conversation_with_summary.predict(input="嗨,最近怎么样?")

输出结果,

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: 嗨,最近怎么样?
AI:> Finished chain.
' 嗨!最近还不错,我在学习新的技能,并且正在尝试新的任务。我也在尝试改进我的语言处理能力,以便更好地与人交流。你呢?'

示例代码,

conversation_with_summary.predict(input="只是在写一些文档!")

输出结果,

Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: 嗨,最近怎么样?
AI:  嗨!最近还不错,我在学习新的技能,并且正在尝试新的任务。我也在尝试改进我的语言处理能力,以便更好地与人交流。你呢?
Human: 只是在写一些文档!
AI:> Finished chain.
' 哦,看起来很有趣!你在写什么文档?'

示例代码,

conversation_with_summary.predict(input="你听说过 LangChain 吗?")

输出结果,

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: 嗨,最近怎么样?
AI:  嗨!最近还不错,我在学习新的技能,并且正在尝试新的任务。我也在尝试改进我的语言处理能力,以便更好地与人交流。你呢?
Human: 只是在写一些文档!
AI:  哦,看起来很有趣!你在写什么文档?
Human: 你听说过 LangChain 吗?
AI:> Finished chain.
' 是的,我知道LangChain。它是一个基于区块链的语言学习平台,旨在帮助人们更好地学习外语。你正在写关于LangChain的文档吗?'

示例代码,

# 我们可以看到,摘要和缓冲区都已更新
conversation_with_summary.predict(input="哈哈,不对,不过很多人都把它混淆了。"
)

输出结果,

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
System: 
The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential. It has been learning new skills and trying new tasks, as well as attempting to improve its language processing so that it can communicate better with humans. The human asks how the AI has been doing recently.
Human: 只是在写一些文档!
AI:  哦,看起来很有趣!你在写什么文档?
Human: 你听说过 LangChain 吗?
AI:  是的,我知道LangChain。它是一个基于区块链的语言学习平台,旨在帮助人们更好地学习外语。你正在写关于LangChain的文档吗?
Human: 哈哈,不对,不过很多人都把它混淆了。
AI:> Finished chain.
' 哦,我明白了。那你在写什么文档呢?'

完结!

相关文章:

Langchain 的 ConversationSummaryBufferMemory

Langchain 的 ConversationSummaryBufferMemory ConversationSummaryBufferMemory 在内存中保留最近交互的缓冲区,但不仅仅是完全刷新旧的交互,而是将它们编译成摘要并使用两者。但与之前的实现不同的是,它使用令牌长度而不是交互次数来确定何…...

【Rust 基础篇】Rust 通道实现单个消费者多个生产者模式

导言 在 Rust 中,我们可以使用通道(Channel)来实现单个消费者多个生产者模式,简称为 MPMC。MPMC 是一种常见的并发模式,适用于多个线程同时向一个通道发送数据,而另一个线程从通道中消费数据的场景。本篇博…...

HTTP协议各版本介绍

HTTP协议是一种用于传输Web页面和其他资源的协议。 下面详细介绍一下HTTP的各个版本: 1.HTTP/0.9 这是最早的HTTP版本,于1991年发布。它非常简单,只能传输HTML格式的文本,并且不支持其他类型的资源、请求头和状态码。 2.HTTP/1…...

玩转ChatGPT:Custom instructions (vol. 1)

一、写在前面 据说GPT-4又被削了,前几天让TA改代码,来来回回好几次才成功。 可以看到之前3小时25条的限制,现在改成了3小时50条,可不可以理解为:以前一个指令能完成的任务,现在得两条指令? 可…...

黄东旭:The Future of Database,掀开 TiDB Serverless 的引擎盖

在 PingCAP 用户峰会 2023 上, PingCAP 联合创始人兼 CTO 黄东旭 分享了“The Future of Database”为主题的演讲, 介绍了 TiDB Serverless 作为未来一代数据库的核心设计理念。黄东旭 通过分享个人经历和示例,强调了数据库的服务化而非服务化…...

Linux环境搭建(XShell+云服务器)

好久不见啊,放假也有一周左右了,简单休息了下(就是玩了几天~~),最近也是在学习Linux,现在正在初步的学习阶段,本篇将会简单的介绍一下Linux操作系统和介绍Linux环境的安装与配置,来帮…...

-bash: /bin/rm: Argument list too long

有套数据库环境,.aud文件太多导致/u01分区使用率过高,rm清理时发现报错如下 [rootdb1 audit]# rm -rf ASM1_ora_*202*.aud -bash: /bin/rm: Argument list too long [rootdb1 audit]# rm -rf ASM1_ora_*20200*.aud -bash: /bin/rm: Argument list too…...

5个步骤完成Linux 搭建Jdk1.8环境

1:首先,在Linux系统中创建一个目录,用于存放JDK文件。可以选择在/opt目录下创建一个新的文件夹,例如/opt/jdk。 sudo mkdir /opt/jdk 2:将下载的jdk-8u381-linux-x64.tar.gz文件复制到新创建的目录中。 sudo cp jdk…...

【JAVASE】运算符

⭐ 作者:小胡_不糊涂 🌱 作者主页:小胡_不糊涂的个人主页 📀 收录专栏:浅谈Java 💖 持续更文,关注博主少走弯路,谢谢大家支持 💖 运算符 1. 什么是运算符2. 算术运算符3.…...

Emacs之改造搜索文件fd-dired(基于fd命令)(一百二十一)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

字典序排数(力扣)思维 JAVA

给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。 示例 1: 输入:n 13 输出:[1,10,11,12,13,2,3,4,5,6,7,8,9] 示例 2: 输入:n 2 输…...

NLP 中的pad/padding操作代码分析

今天分析一下NLP中的pad操作代码: 该方法的作用是将输入的序列列表seqs进行填充操作,使其具有相同的长度,以便进行批处理。填充使用指定的pad_token进行,并生成一个对应的mask标志列表,用于标记哪些部分是填充内容&am…...

JavaWeb 速通HTTP

目录 一、HTTP快速入门 1.HTTP简介 : 2.HTTP请求头 : 3.HTTP响应头 : 二、HTTP响应状态码 1.基本介绍 : 2.常见状态码 : 3.状态码的分类 : 4.完整状态码汇总 : 三、HTTP请求包和响应包 1.请求包分析 : 1 GET请求 (1) 说明 (2) doGet返回数据给浏览器 (3) form表单提…...

Vue 本地应用 图片切换 v-show v-bind实践

点击切换图片的本质,其实修改的是img标签的src属性。 图片的地址有很多个,在js当中通过数组来保存多个数据,数组的取值结合索引,根据索引可以来判断是否是第一张还是最后一张。 图片的变化本质是src属性被修改了,属性…...

AI生成-- autocomplete 模糊搜索

el-autocomplete可以通过设置属性来实现模糊搜索功能。 首先需要设置一个搜索函数&#xff0c;即在输入框输入内容时会调用的函数&#xff0c;用来返回所有符合条件的结果。这个函数需要接收两个参数&#xff1a;输入框的值和一个回调函数。 <el-autocompletev-model"…...

怎么用手机做文字二维码?文本内容在线生成二维码技巧

手机端怎么将文字制作二维码呢&#xff1f;现在二维码是日常生活中经常会使用的一种工具&#xff0c;能够将不同的内容生成二维码使用&#xff0c;比如文本二维码就是常用的一种类型。那么当我们在没有电脑的情况下时&#xff0c;如何通过手机来快速生成二维码&#xff08;二维…...

【Ap模块EM】08-怎么让Execution Management成为第一个执行的进程?

前面的文章,我们讲述了ubuntu系统上电执行的流程,那么在Ap AutoSAR中Execution Management怎么成为第一个被执行的进程呢额?就是让它取代传统的init进程,成为ubuntu系统第一个执行的进程? 我们可以通过符号链接 symbolic link去实现,这个类似于windows系统中的某个exe文件…...

使用vscode+platformio搭建arduino开发环境

存在的问题&#xff1a; Arduino编译时会将所有的C文件都编译一遍造成编译很慢&#xff0c;一个简单的工程稍加修改有可能都需要三四分钟才能编译完成&#xff0c;同时arduino也不支持代码跳转查看功能&#xff0c;不方便代码查看。 解决方法&#xff1a; 使用vscodeplatfor…...

java后端接口实现302跳转

正常来说&#xff0c;接口返回String是"redirect:"url或者“r:”url就能实现前端接收到返回后自动302.但是我在自己的一个项目中这么写了之后发现返回的是纯字符串&#xff0c;很奇怪。 最后发现&#xff0c;如果你的controller层有RestController注解&#xff0c;那…...

分布式理论:CAP理论 BASE理论

文章目录 1. CAP定理1.1 一致性1.2 可用性1.3 分区容错1.4 矛盾 2. BASE理论3. 解决分布式事务的思路4. 扩展 解决分布式事务问题&#xff0c;需要一些分布式系统的基础知识作为理论指导。 1. CAP定理 Consistency(一致性): 用户访问分布式系统中的任意节点&#xff0c;得到的…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目&#xff0c;所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...