当前位置: 首页 > news >正文

使用vscode+platformio搭建arduino开发环境

存在的问题:

Arduino编译时会将所有的C文件都编译一遍造成编译很慢,一个简单的工程稍加修改有可能都需要三四分钟才能编译完成,同时arduino也不支持代码跳转查看功能,不方便代码查看。

解决方法:

使用vscode+platformio来开发arduino, 编译烧录都在vscode环境下,大大的提高了效率。

具体操作:

1. 下载安装vscode, 注意最新版的vscode已不再支持win7系统,如果是win7系统请下载vscode 1.70以前的版本。

2. 在vscdoe环境下添加platformio插件

 3. PIO Home界面新建工程,选择开发板及工程目录,注意新建工程时会很慢,因为platformio会在github上拉取文件,建议使用手机热点在早八点钟前新建工程。

 工程成功建立的界面:

可以使用Ctrl+左键查看函数定义

 选择相应的COM口即可编译下载工程

 这样编译工程会比arduino的快很多!!!

 

相关文章:

使用vscode+platformio搭建arduino开发环境

存在的问题: Arduino编译时会将所有的C文件都编译一遍造成编译很慢,一个简单的工程稍加修改有可能都需要三四分钟才能编译完成,同时arduino也不支持代码跳转查看功能,不方便代码查看。 解决方法: 使用vscodeplatfor…...

java后端接口实现302跳转

正常来说,接口返回String是"redirect:"url或者“r:”url就能实现前端接收到返回后自动302.但是我在自己的一个项目中这么写了之后发现返回的是纯字符串,很奇怪。 最后发现,如果你的controller层有RestController注解,那…...

分布式理论:CAP理论 BASE理论

文章目录 1. CAP定理1.1 一致性1.2 可用性1.3 分区容错1.4 矛盾 2. BASE理论3. 解决分布式事务的思路4. 扩展 解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。 1. CAP定理 Consistency(一致性): 用户访问分布式系统中的任意节点,得到的…...

Tensorflow学习

一、处理数据的结构 案例代码如下: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np# create data x_data np.random.rand(100).astype(np.float32) y_data x_data*0.1 0.3# 创建结构(一维结构) Weights tf.Variable(tf.random.uniform(…...

5-Ngnix配置基于用户访问控制和IP的虚拟主机

目录 5.1.Ngnix配置基于用户访问控制的多虚拟主机 5.1.1.前提条件 5.1.2.Ngnix配置基于用户访问控制的多虚拟主机 5.2.Ngnix配置基于IP的虚拟主机 5.3.Ngnix配置基于IP的多虚拟主机 Nginx配置文件在/usr/local/nginx/conf下,文件名为nginx.conf 5.1.Ngnix配置…...

springboot jar分离部署

springboot jar分离部署 注意&#xff1a;spring boot web项目别使用jsp页面&#xff0c;可以使用模板代替&#xff0c;jsp打包时访问页面会报404错误。 1.具体配置如下&#xff1a; <build><plugins><!--更换maven的jar打包插件先前使用的是spring-boot-mav…...

Opencv 细节补充

1.分辨率的解释 •像素&#xff1a;像素是分辨率的单位。像素是构成位图图像最基本的单元&#xff0c;每个像素都有自己的颜色。 •分辨率&#xff08;解析度&#xff09;&#xff1a; a) 图像分辨率就是单位英寸内的像素点数。单位为PPI(Pixels Per Inch) b) PPI表示的是每英…...

内存泄漏专题(7)hook之宏定义

前面介绍的mtrace也好&#xff0c;bcc也罢&#xff0c;其实都是hook技术的一种实现&#xff0c;但是mtrace本身使用场景上有局限&#xff0c;而bcc环境依赖则十分复杂。因此&#xff0c;这些调试手段只适用于开发环境用来调试&#xff0c;对于生产环境&#xff0c;均不是一个非…...

Python 基础(十八):异常处理

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 一、异常是什么&#xff1f;二、异常处理的基本语法三、捕获特定的异常类型四、finall…...

iTOP-RK3568开发板Docker 安装 Ubuntu 18.04

Docker 下载安装 Ubuntu18.04&#xff0c;输入以下命令&#xff1a; sudo apt update docker pull ubuntu:18.04 切换 Shell 到 Ubuntu 18.04&#xff0c;输入以下命令&#xff1a; docker container run -p 8000:3000 -it ubuntu:18.04 /bin/bash -p 参数&#xff1a;容器的…...

FFmpeg AVFilter的原理(三)- filter是如何被驱动的

首先上官方filter的链接&#xff1a;https://ffmpeg.org/ffmpeg-filters.html 关于filter命令行&#xff1a;FFmpeg-4.0 的filter机制的架构与实现.之一 Filter原理 1、下面是一个avfilter的graph 上图是ffmpeg中doc/examples中filtering_video.c案例的示意图。 特别注意上面蓝…...

ARM day8 key1/2/3led

key_led.h #ifndef _KEY_H_ #define _KEY_H_#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_gic.h"//EXTI编号 typedef enum {EXTI0,EXTI1,EXTI2,EXTI3,EXTI4,EXTI5,…...

windows 系统安装sonarqube

SonarQube是一种自动代码审查工具&#xff0c;用于检测代码中的错误&#xff0c;漏洞和代码异味。它可以与您现有的工作流程集成&#xff0c;以便在项目分支和拉取请求之间进行连续的代码检查。 官方网站&#xff1a; https://www.sonarqube.org/ 1. 使用前提条件 运行SonarQ…...

Unity噪声图生成(编辑器扩展)

最近发现项目里很多shader都需要噪声图&#xff0c;&#xff08;shadergraph中有自己的噪声图生成&#xff09;当遇到需要噪声图时去寻找很麻烦&#xff0c;所以从网上查阅资料编写了一个Unity扩展的噪声图生成。 Perlin噪声 Perlin噪声是一种渐变噪声算法&#xff0c;由Ken …...

http-为什么文件上传要转成Base64

# 前言 最近在开发中遇到文件上传采用Base64的方式上传&#xff0c;记得以前刚开始学http上传文件的时候&#xff0c;都是通过content-type为multipart/form-data方式直接上传二进制文件&#xff0c;我们知道都通过网络传输最终只能传输二进制流&#xff0c;所以毫无疑问他们本…...

htmlCSS-----定位

目录 前言 定位 分类和取值 定位的取值 1.相对定位 2.绝对位置 元素居中操作 3.固定定位 前言 今天我们来学习html&CSS中的元素的定位&#xff0c;通过元素的定位我们可以去更好的将盒子放到我们想要的位置&#xff0c;下面就一起来看看吧&#xff01; 定位 定位posi…...

腾讯云大数据型CVM服务器实例D3和D2处理器CPU型号说明

腾讯云服务器CVM大数据型D3和D2处理器型号&#xff0c;大数据型D3云服务器CPU采用2.5GHz Intel Xeon Cascade Lake 处理器&#xff0c;大数据型D2云服务器CPU采用2.4GHz Intel Xeon Skylake 6148 处理器。腾讯云服务器网分享云服务器CVM大数据型CPU型号、处理器主频性能&#x…...

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

1. 中值定理 中值定理是反映函数与导数之间联系的重要定理&#xff0c;也是微积分学的理论基础&#xff0c;在许多方面它都有重要的作用&#xff0c;在进行一些公式推导与定理证明中都有很多应用。中值定理是由众多定理共同构建的&#xff0c;其中拉格朗日中值定理是核心&…...

极速查找(2)-算法分析

篇前小言 本篇文章是对查找&#xff08;1&#xff09;的续讲线性索引查找 线性索引查找&#xff08;Linear Index Search&#xff09;是一种基于索引的查找算法。它在数据集合中创建一个索引 结构&#xff0c;然后使用该索引结构来加快对目标元素的查找。 线性索引是一种在数…...

flask路由添加参数

flask路由添加参数 在 Flask 中&#xff0c;可以通过两种方式在路由中添加参数&#xff1a;在路由字符串中直接指定参数&#xff0c;或者通过 request 对象从请求中获取参数。 在路由字符串中指定参数&#xff1a;可以将参数直接包含在路由字符串中。参数可以是字符串、整数、…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...