当前位置: 首页 > news >正文

Tensorflow学习

一、处理数据的结构

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3# 创建结构(一维结构)
Weights = tf.Variable(tf.random.uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))y = Weights*x_data + biases# 计算丢失值
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)init =tf.initialize_all_variables()sess = tf.Session()
sess.run(init) #激活for step in range(201):sess.run(train)if step%20 ==0:print(step,sess.run(Weights),sess.run(biases))

 二、Session会话控制

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as npmatrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],[2]])# 矩阵相乘
product = tf.matmul(matrix1,matrix2)#会话控制
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()

输出结果为:[[12]]

 三、Variable变量

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()state = tf.Variable(0,name = 'counter')
# print(state.name)
one = tf.constant(1)new_value = tf.add(state , one)update = tf.assign(state,new_value)init = tf.initialize_all_variables()# 必须使用Session激活
with tf.Session() as sess:sess.run(init)for _ in range(3):sess.run(update)print(sess.run(state))

四、placeholder传入值

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)output = tf.multiply(input1,input2)with tf.Session() as sess:print(sess.run(output,feed_dict = {input1:[7.],input2:[2.]}))

输出结果为:[14.]

五、激励函数

 将线性函数扭曲为非线性函数的一种函数

六、添加神经层

def add_layer(inputs,in_size,out_size,activation_function = None):Weights = tf.Variable(tf.random.uniform([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])) + 0.1# 相乘Wx_plus_b = tf.matmul(inputs,Weights) + biases# 激活if activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs

七、建立神经网络

案例代码如下:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as npdef add_layer(inputs,in_size,out_size,activation_function = None):Weights = tf.Variable(tf.random.uniform([in_size,out_size]))biases = tf.Variable(tf.zeros([1,out_size])) + 0.1# 相乘Wx_plus_b = tf.matmul(inputs,Weights) + biases# 激活if activation_function is None:outputs = Wx_plus_belse:outputs = activation_function(Wx_plus_b)return outputs
# 定义数据形式
x_data = np.linspace(-1,1,300)[:,np.newaxis] #增加数据维度
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) - 0.5 + noisexs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])# 构建隐藏层
l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
# 构建输出层
predition = add_layer(l1,10,1,activation_function=None)# 计算误差
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - predition),reduction_indices=[1]))# 对误差进行更正
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)for i in range(1000):sess.run(train_step,feed_dict={xs:x_data,ys:y_data})if i%50 == 0:print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))

运行结果如下:

可观察到误差不断减小 ,说明预测准确性在不断增加

相关文章:

Tensorflow学习

一、处理数据的结构 案例代码如下: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np# create data x_data np.random.rand(100).astype(np.float32) y_data x_data*0.1 0.3# 创建结构(一维结构) Weights tf.Variable(tf.random.uniform(…...

5-Ngnix配置基于用户访问控制和IP的虚拟主机

目录 5.1.Ngnix配置基于用户访问控制的多虚拟主机 5.1.1.前提条件 5.1.2.Ngnix配置基于用户访问控制的多虚拟主机 5.2.Ngnix配置基于IP的虚拟主机 5.3.Ngnix配置基于IP的多虚拟主机 Nginx配置文件在/usr/local/nginx/conf下,文件名为nginx.conf 5.1.Ngnix配置…...

springboot jar分离部署

springboot jar分离部署 注意&#xff1a;spring boot web项目别使用jsp页面&#xff0c;可以使用模板代替&#xff0c;jsp打包时访问页面会报404错误。 1.具体配置如下&#xff1a; <build><plugins><!--更换maven的jar打包插件先前使用的是spring-boot-mav…...

Opencv 细节补充

1.分辨率的解释 •像素&#xff1a;像素是分辨率的单位。像素是构成位图图像最基本的单元&#xff0c;每个像素都有自己的颜色。 •分辨率&#xff08;解析度&#xff09;&#xff1a; a) 图像分辨率就是单位英寸内的像素点数。单位为PPI(Pixels Per Inch) b) PPI表示的是每英…...

内存泄漏专题(7)hook之宏定义

前面介绍的mtrace也好&#xff0c;bcc也罢&#xff0c;其实都是hook技术的一种实现&#xff0c;但是mtrace本身使用场景上有局限&#xff0c;而bcc环境依赖则十分复杂。因此&#xff0c;这些调试手段只适用于开发环境用来调试&#xff0c;对于生产环境&#xff0c;均不是一个非…...

Python 基础(十八):异常处理

❤️ 博客主页&#xff1a;水滴技术 &#x1f338; 订阅专栏&#xff1a;Python 入门核心技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; 文章目录 一、异常是什么&#xff1f;二、异常处理的基本语法三、捕获特定的异常类型四、finall…...

iTOP-RK3568开发板Docker 安装 Ubuntu 18.04

Docker 下载安装 Ubuntu18.04&#xff0c;输入以下命令&#xff1a; sudo apt update docker pull ubuntu:18.04 切换 Shell 到 Ubuntu 18.04&#xff0c;输入以下命令&#xff1a; docker container run -p 8000:3000 -it ubuntu:18.04 /bin/bash -p 参数&#xff1a;容器的…...

FFmpeg AVFilter的原理(三)- filter是如何被驱动的

首先上官方filter的链接&#xff1a;https://ffmpeg.org/ffmpeg-filters.html 关于filter命令行&#xff1a;FFmpeg-4.0 的filter机制的架构与实现.之一 Filter原理 1、下面是一个avfilter的graph 上图是ffmpeg中doc/examples中filtering_video.c案例的示意图。 特别注意上面蓝…...

ARM day8 key1/2/3led

key_led.h #ifndef _KEY_H_ #define _KEY_H_#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_gic.h"//EXTI编号 typedef enum {EXTI0,EXTI1,EXTI2,EXTI3,EXTI4,EXTI5,…...

windows 系统安装sonarqube

SonarQube是一种自动代码审查工具&#xff0c;用于检测代码中的错误&#xff0c;漏洞和代码异味。它可以与您现有的工作流程集成&#xff0c;以便在项目分支和拉取请求之间进行连续的代码检查。 官方网站&#xff1a; https://www.sonarqube.org/ 1. 使用前提条件 运行SonarQ…...

Unity噪声图生成(编辑器扩展)

最近发现项目里很多shader都需要噪声图&#xff0c;&#xff08;shadergraph中有自己的噪声图生成&#xff09;当遇到需要噪声图时去寻找很麻烦&#xff0c;所以从网上查阅资料编写了一个Unity扩展的噪声图生成。 Perlin噪声 Perlin噪声是一种渐变噪声算法&#xff0c;由Ken …...

http-为什么文件上传要转成Base64

# 前言 最近在开发中遇到文件上传采用Base64的方式上传&#xff0c;记得以前刚开始学http上传文件的时候&#xff0c;都是通过content-type为multipart/form-data方式直接上传二进制文件&#xff0c;我们知道都通过网络传输最终只能传输二进制流&#xff0c;所以毫无疑问他们本…...

htmlCSS-----定位

目录 前言 定位 分类和取值 定位的取值 1.相对定位 2.绝对位置 元素居中操作 3.固定定位 前言 今天我们来学习html&CSS中的元素的定位&#xff0c;通过元素的定位我们可以去更好的将盒子放到我们想要的位置&#xff0c;下面就一起来看看吧&#xff01; 定位 定位posi…...

腾讯云大数据型CVM服务器实例D3和D2处理器CPU型号说明

腾讯云服务器CVM大数据型D3和D2处理器型号&#xff0c;大数据型D3云服务器CPU采用2.5GHz Intel Xeon Cascade Lake 处理器&#xff0c;大数据型D2云服务器CPU采用2.4GHz Intel Xeon Skylake 6148 处理器。腾讯云服务器网分享云服务器CVM大数据型CPU型号、处理器主频性能&#x…...

计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

1. 中值定理 中值定理是反映函数与导数之间联系的重要定理&#xff0c;也是微积分学的理论基础&#xff0c;在许多方面它都有重要的作用&#xff0c;在进行一些公式推导与定理证明中都有很多应用。中值定理是由众多定理共同构建的&#xff0c;其中拉格朗日中值定理是核心&…...

极速查找(2)-算法分析

篇前小言 本篇文章是对查找&#xff08;1&#xff09;的续讲线性索引查找 线性索引查找&#xff08;Linear Index Search&#xff09;是一种基于索引的查找算法。它在数据集合中创建一个索引 结构&#xff0c;然后使用该索引结构来加快对目标元素的查找。 线性索引是一种在数…...

flask路由添加参数

flask路由添加参数 在 Flask 中&#xff0c;可以通过两种方式在路由中添加参数&#xff1a;在路由字符串中直接指定参数&#xff0c;或者通过 request 对象从请求中获取参数。 在路由字符串中指定参数&#xff1a;可以将参数直接包含在路由字符串中。参数可以是字符串、整数、…...

网络安全系统教程+学习路线(自学笔记)

一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防两面…...

23. 合并 K 个升序链表

题目描述 给你一个链表数组&#xff0c;每个链表都已经按升序排列。 请你将所有链表合并到一个升序链表中&#xff0c;返回合并后的链表。 示例 1&#xff1a; 输入&#xff1a;lists [[1,4,5],[1,3,4],[2,6]] 输出&#xff1a;[1,1,2,3,4,4,5,6] 解释&#xff1a;链表数组…...

Nexus3部署、配置+SpringBoot项目Demo

Docker部署Nexus 搜索Nexus3镜像&#xff1a;[rootlocalhost ~]# docker search nexus 拉取Nexus3镜像&#xff1a;[rootlocalhost ~]# docker pull sonatype/nexus3 启动Nexus3前查看虚拟机端口是否被占用&#xff1a;[rootlocalhost ~]# netstat -nultp 通过Docker Hub查看安…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...