当前位置: 首页 > news >正文

CMIP6数据处理及在气候变化、水文、生态等领域中的应用

目录

专题一 CMIP6中的模式比较计划

专题二 数据下载

专题三 基础知识

专题四 单点降尺度

专题五 统计方法的区域降尺度

专题六 基于WRF模式的动力降尺度动态降尺度

专题七 典型应用案例-气候变化1

专题八 典型应用案例-气候变化2

专题九 典型应用案例-生态领域

专题十 典型应用案例-水文、生态模式数据


气候变化对农业、生态系统、社会经济以及人类的生存与发展具有深远影响,是当前全球关注的核心议题之一。IPCC(Intergovernmental Panel on Climate Change,政府间气候变化专门委员会)的第六次评估报告明确;指出,自20世纪50年代以来,全球平均气温和海温的上升、广泛的积雪和冰川融化以及全球海平面的升高,无一不在证明气候变暖是无可争议的事实。为了对未来气候进行评估,科学家通常使用全球气候模型进行预测。

全球气候模型(Global Climate Model, GCM),亦称全球环流模型或全球大气模型,是一种数值模型,被广泛用于模拟地球的气候系统。GCM利用一系列的数学公式来描绘气候系统的各个主要组成部分,包括大气、海洋、冻土以及地表和海洋表面的生物地理过程。GCM的空间和时间精度可以根据需要进行调整。这些模型为我们提供了理解气候系统运行机制的途径,为预测气候变化趋势、评估气候变化对人类社会和生态系统的影响以及制定应对气候变化的策略提供了关键工具。

为了进一步理解气候变化,世界气候研究计划(World Climate Research Programme, WCRP)发起了气候模型比较计划(Climate Model Intercomparison Project,CMIP)。CMIP的主要目标是收集和比较各种全球气候模型的模拟结果,以理解和预测过去、现在和未来的气候变化。

CMIP6数据被广泛应用于全球和地区的气候变化研究、极端天气和气候事件研究、气候变化影响和风险评估、气候变化的不确定性研究、气候反馈和敏感性研究以及气候政策和决策支持等多个领域。这些数据为我们理解和预测气候变化,评估气候变化的影响和风险,以及制定有效的气候政策和决策提供了关键的信息和工具。

课前环境配置专题
提供所有安装程序及数据、代码、教材,讲解环境配置,远程辅助安装上机环境。

专题一 CMIP6中的模式比较计划

1.1 GCM介绍

全球气候模型(Global Climate Model, GCM),也被称为全球环流模型或全球大气模型,是一种用于模拟地球的气候系统的数值模型。这种模型使用一系列的数学公式来描述气候系统的主要组成部分,包括大气、海洋、冰冻土壤以及地表和海洋表面的生物地理过程。GCM在空间和时间上的精度可以根据需求进行调整,通常的分辨率可以从几百公里到几公里,时间步长可以从几分钟到几小时。

1.2 CMIP介绍

CMIP,全称为气候模型比较计划(Climate Model Intercomparison Project),是由世界气候研究计划(World Climate Research Programme,WCRP)发起的一个国际合作项目。其目的是通过收集和比较各种全球气候模型(GCMs)的模拟结果,以理解过去的、现在的和未来的气候变化。

1.3 相关比较计划介绍

专题二 数据下载

2.1 方法一:手动人工
利用官方网站

2.2 方法二:自动
利用Python的命令行工具

2.3 方法三:半自动购物车
利用官方网站

2.4 裁剪netCDF文件
基于QGIS和CDO实现对netCDF格式裁剪

QGIS中的操作

裁剪效果

2.5 处理日期非365天的GCM
以BCC为例处理

专题三 基础知识

3.1 Python基础

Python 是一种高级的、解释型的编程语言,其语法简洁明了,适合快速开发。在大气科学中,Python 以其丰富的科学计算和数据分析库备受青睐。这些库如 Numpy,Scipy,Pandas 和 Xarray 等,为处理大气科学数据提供了强大的支持。

Numpy:Numpy 是 Python 中用于科学计算的核心库,提供了高性能的多维数组对象及相关工具。对于大气科学数据的处理,例如温度、压力、风速等通常都会使用到多维数组。Numpy 提供了丰富的函数库来处理这些数组,包括数学运算、逻辑运算、形状操作、排序、选择等操作。

Scipy:Scipy 是基于 Python 的开源软件,用于科学计算中的数值积分和微分方程数值求解,线性代数,优化,信号处理等。在大气科学中,例如对气温、气压等数据进行傅立叶分析,求解大气动力学中的偏微分方程等,都可以使用 Scipy 来实现。

Pandas:Pandas 是基于 Numpy 构建的,使数据清洗和分析工作变得更快更简单。Pandas 是专门为处理表格和混杂数据设计的,而 Numpy 更适合处理统一的数值数组数据。在大气科学中,例如对气象站的观测数据进行时间序列分析,处理混合类型的气象数据,以及对数据进行清洗、筛选和统计等操作,Pandas 都是非常有用的工具。

3.2 CDO基本操作

CDO(Climate Data Operator)是大气科学领域常用的一款气候和气象数据处理工具。它是一个功能强大的命令行工具,可以处理和分析格网和无格网数据,支持多种数据格式,包括netCDF、GRIB、SERVICE, EXTRA和IEG。

CDO提供了一套丰富的函数库,可以用来进行各种常见的数据操作,包括:
基础操作:如选择、提取和修改变量、维度、属性等。
数值操作:如四则运算、统计运算、函数运算等。例如,可以计算数据的平均值、最大值、最小值、标准差等。
空间操作:如重新格网、插值、汇总、选择和提取地理区域等。
时间操作:如选择和提取时间周期、计算时间平均或累积等。

3.3 Xarray的基本操作

Xarray 是一个用于处理多维数组数据的 Python 库,它在 numpy 的基础上提供了一系列用于数据操作和分析的高级接口,并能很好地支持 netCDF 这类基于网络的自描述数据格式,因此在大气科学和气候科学中被广泛使用。

Xarray 的主要特点包括:
基于标签的数据操作:Xarray 使用维度名称而不是轴编号进行数据选择和操作,极大地增强了代码的可读性和可维护性。
自动对齐数据:在进行运算时,Xarray 可以自动对齐不同数据集的变量(variables)和坐标(coordinates)。
分组运算和数据透视:Xarray 支持类似于 pandas 的分组运算(group-by)和数据透视(pivot)功能。
I/O操作:Xarray 对多种数据格式提供了非常好的支持,尤其是对 netCDF 数据的读取和写入。

专题四 单点降尺度

4.1 Delta方法

Delta方法(Delta Change Method),也称为增量方法或差值方法,是气候模型降尺度的一种简单而常用的方法。该方法假设气候变化的幅度在未来相对于历史期间将保持恒定。因此,对于某一具体的未来时段,可以通过计算过去和现在气候的差值(即 delta),并将其应用到未来的气候预测上,来预估未来的气候状态。该方法可以应用于温度和降水等气候变量的预测。

4.2 统计订正

概率分布函数(Probability Density Function, PDF)的订正。这种方法的基本思想是:通过修改大尺度模型输出的PDF,使其更符合观测数据的PDF,从而获得更准确的小尺度气候变量。

4.3 机器学习方法

降尺度是将粗尺度的全球气候模型(GCM)输出数据转换为地面更精细尺度的过程。机器学习方法因其在处理复杂模式识别和高维数据问题的强大能力,已经被成功应用于降尺度技术。在气候学领域,机器学习已被成功用于将粗尺度的气候模型输出(例如,温度和降水)与其他环境变量(例如,地形和土壤类型)关联,以获得更高分辨率的气候预测。

实现步骤
建立特征
建立模型
模型评估

4.4 多算法集成方法

贝叶斯模型平均 (Bayesian Model Averaging, BMA)

贝叶斯模型平均是一种统计方法,用于根据观察数据确定各种模型的后验概率。与选择一个最好的模型相反,贝叶斯模型平均考虑了所有可能的模型,然后根据每个模型的后验概率进行加权平均。

Python+pymc3实现

专题五 统计方法的区域降尺度

5.1 Delta方法

5.2 基于概率订正方法的

专题六 基于WRF模式的动力降尺度动态降尺度

通常使用更高分辨率的区域气候模型(RCM),这些模型在更大尺度的全球气候模型驱动下运行。其中,WRF(Weather Research and Forecasting)模型是目前使用最广泛的区域气候模型之一。

WRF模型是一个灵活的、大气环流模型,适合用于各种尺度的气候和气象研究。它的主要特点是具有高分辨率(可达到几公里),并且可以考虑到许多重要的地球物理过程,如云的形成、降水、陆面过程、海洋过程、边界层过程、辐射、化学过程等。

6.1 制备CMIP6的WRF驱动数据

利用cdo工具对gcm的输出文件进行重新编码制备wrf的驱动数据
①针对压力坐标系的数据制备
②针对sigma坐标系GCM数据制备
③WPS处理

6.2 WRF模式运行

6.3 模式的后处理

提取变量变量的统计变量的可视化

专题七 典型应用案例-气候变化1

7.1 针对风速进行降尺度

7.2 针对短波辐射降尺度

专题八 典型应用案例-气候变化2

ECA极端气候指数计算

ECA (European Climate Assessment) 是欧洲的一个气候评估项目,其在全球范围内发布了一系列的极端气候事件指数。这些指数被广泛用于气候变化研究,特别是在研究极端天气和气候事件方面。

ECA 的极端气候指数主要包括以下几类:

温度指数:这些指数主要用于度量温度的极端情况,例如热日数(TX90p,年中最高气温超过90百分位数的天数)、冷日数(TN10p,年中最低气温低于10百分位数的天数)、热夜数(TN90p,年中最低气温超过90百分位数的天数)、冷夜数(TN10p,年中最低气温低于10百分位数的天数)等。

降水指数:这些指数主要用于度量降水的极端情况,例如最大连续5日降水量(RX5day)、大于或等于10mm的降水日数(R10mm)、大于或等于20mm的降水日数(R20mm)、降水强度(SDII)等。

这些指数对于理解和预测极端气候事件的影响非常重要,因为极端气候事件(如热浪、干旱、洪水等)往往比平均气候变化带来更大的影响。因此,对这些指数的研究有助于我们更好地理解和适应气候变化。

Consecutive dry days index
Consecutive frost days index per time period
Consecutive summer days index per time period
Consecutive wet days index per time period

专题九 典型应用案例-生态领域

预估生长季开始和结束时间
1、建立气象数据与VIPPHEN遥感物候数据中生长季开始和结束
2、在未来气候情景下预估生长季长季开始、结束和长度

专题十 典型应用案例-水文、生态模式数据

SWAT数据制备
Biome-BGC数据
Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数,模拟日尺度碳、水和氮通量的模型,其研究的空间尺度可以从点尺度扩展到陆地生态系统。案例中以单点模拟方式制备CMIP6的气象数据。

注:请提前自备电脑及安装所需软件。


最新基于Citespace、vosviewer、R语言文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法_WangYan2022的博客-CSDN博客通过文献计量学讲解、高效选题、数据库检索数据下载、软件使用等八个专题详细讲解,让学员系统全面的掌握文献计量学的基本理论和知识;熟练掌握Citespace和vosviewer及R语言文献可视化分析技术;最终实现从主题确定、数据分析绘图、文章框架与写作,全流程掌握一篇文献信息可视化分析报告(论文)的思路逻辑与技术方法。https://blog.csdn.net/WangYan2022/article/details/131889523?spm=1001.2014.3001.5502R-Meta分析与【文献计量分析、贝叶斯、机器学习等】多技术融合实践与拓展进阶_WangYan2022的博客-CSDN博客针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。https://blog.csdn.net/WangYan2022/article/details/130924289?spm=1001.2014.3001.5502【高分论文密码】大尺度空间模拟预测和数字制图技术和不确定性分析_WangYan2022的博客-CSDN博客结合经典的例子讲解R语言在空间数据处理、管理以及可视化的操作,从空间数据计量、大尺度时间序列分析与突变检测、空间数据插值、空间数据建模、机器学习空间预测、多种机器学习集成技术、空间升、降尺度技术、空间模拟偏差订正技术、数据可视化、知识图谱等方面让您全方位掌握R语言大尺度空间数据分析模拟预测及可视化技术。https://blog.csdn.net/WangYan2022/article/details/130800531?spm=1001.2014.3001.5502基于MATLAB、Python科研数据可视化_python基于matlab_WangYan2022的博客-CSDN博客互联网的飞速发展伴随着海量信息的产生,而海量信息的背后对应的则是海量数据。如何从这些海量数据中获取有价值的信息来供人们学习和工作使用,这就不得不用到大数据挖掘和分析技术。数据可视化分析作为大数据技术的核心一环,其重要性不言而喻。_python基于matlabhttps://blog.csdn.net/WangYan2022/article/details/127053497?spm=1001.2014.3001.5502Python语言地球科学领域中的应用_python青藏高原_WangYan2022的博客-CSDN博客Python在科学和工程领域地位日益重要,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面的优异性能使得Python在地球科学中地理、气象、气候变化、水文、生态、传感器等领域的学术研究和工程项目中得到广泛应用并高效解决各种数据分析问题。......_python青藏高原https://blog.csdn.net/WangYan2022/article/details/125254141?spm=1001.2014.3001.5502

相关文章:

CMIP6数据处理及在气候变化、水文、生态等领域中的应用

目录 专题一 CMIP6中的模式比较计划 专题二 数据下载 专题三 基础知识 专题四 单点降尺度 专题五 统计方法的区域降尺度 专题六 基于WRF模式的动力降尺度动态降尺度 专题七 典型应用案例-气候变化1 专题八 典型应用案例-气候变化2 专题九 典型应用案例-生态领域 专题…...

hadoop之mapreduce详解

一、概述 优化前我们需要知道hadoop适合干什么活,适合什么场景,在工作中,我们要知道业务是怎样的,能才结合平台资源达到最有优化。除了这些我们当然还要知道mapreduce的执行过程,比如从文件的读取,map处理&…...

leetcode做题笔记44

给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 ? 和 * 匹配规则的通配符匹配: ? 可以匹配任何单个字符。 * 可以匹配任意字符序列(包括空字符序列)。 判定匹配成功的充要条件是:字符模式必须能够 完…...

mac brew安装 node 踩坑日记- n切换node不生效

最近用了一个旧电脑开发,发现里面node管理混乱,有nvm、n和homebrew,导致切换node 切换不了,开发也有莫名其妙的错误。所以我打算重新装一下node,使用n做为管理工具。 1. 删除nvm cd ~ rm -rf .nvm2. 删除n sudo rm -…...

数据预处理matlab

matlab数据的获取、预处理、统计、可视化、降维 数据的预处理 - MATLAB & Simulink - MathWorks 中国https://ww2.mathworks.cn/help/matlab/preprocessing-data.html 一、数据的获取 1.1 从Excel中获取 使用readtable() 例1: 使用spreadsheetImportOption…...

ubuntu18.04安装autoware1.15

目录 前言一、准备工作1.安装autoware1.152.安装依赖3.把src/autoware/common/autoware_build_flags/cmake文件夹下的CUDA版本改为11.4(或者你电脑上的版本) 二、解决报错错误类型1错误类型2错误类型3错误类型4错误类型5错误类型6 前言 本文参考链接&am…...

在CSDN学Golang云原生(Docker基础)

一,docker安装配置 要在golang中使用Docker,需要先安装并配置好Docker。下面是基本的Docker安装和配置步骤: 下载并安装Docker 官方下载地址:https://docs.docker.com/get-docker/ 根据你的操作系统选择对应版本的Docker&…...

Zookeeper命令总结

目录 1、常用命令2、ls path3、create xxx创建持久化节点创建临时节点创建持久化序列节点 4、get path5、set path6、delete path7、监听器总结1)节点的值变化监听2)节点的子节点变化监听(路径变化)3)当某个节点创建或…...

C语言中的函数(超详细)

C语言中的函数(超详细) 一、函数概述二、C语言中函数的分类1.库函数2.自定义函数三、函数的参数1.实际参数(实参)2.形式参数(形参)四、函数的调用1.传值调用2.传址调用五、函数的嵌套调用和链式访问1.嵌套调…...

华为H3C思科网络设备命令对照表

类别命令功能华为H3C思科通用取消关闭当前设置undoundono通用显示查看displaydisplayshow通用退回上级quitquitquit通用设置设备名称sysnamesysnamehostname通用到全局模式system-viewsystem-viewenable config terminal通用删除文件deletedeletedelete通用重启设备rebootreboo…...

产品需求、系统架构设计经验篇

需求设计思维导图UML 建模原型规范什么样的需求该忽略1.拍拍脑袋得来的想法,往往是没用的2.用户反馈的信息,不应该直接纳入需求3.扭改用户习惯的需求,一律不考虑 什么样的需求该重视1.从运维系统中根据数据结果分析得出的结论2.重视有洞见者的…...

关于websocket的几点注意事项

第一、普通websocket直接集成即可 <!-- Spring Websocket 相关依赖 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency> 第二、web后端两点,创…...

go学习 4、复合数据类型

4、复合数据类型 数组、slice、map和结构体 如何使用结构体来解码和编码到对应JSON格式的数据&#xff0c;并且通过结合使用模板来生成HTML页面 数组和结构体是聚合类型;它们的值由许多元素或成员字段的值组成。数组是由同构的元素组成&#xff08;每个数组元素都是完全相同的…...

Rust: Vec类型的into_boxed_slice()方法

比如&#xff0c;我们经常看到Vec类型&#xff0c;但取转其裸指针&#xff0c;经常会看到into_boxed_slice()方法&#xff0c;这是为何&#xff1f; use std::{fmt, slice};#[derive(Clone, Copy)] struct RawBuffer {ptr: *mut u8,len: usize, }impl From<Vec<u8>&g…...

Python - Opencv + pyzbar实时摄像头识别二维码

直接上代码&#xff1a; import cv2 from pyzbar.pyzbar import decodecap cv2.VideoCapture(0) # 打开摄像头while True: # 循环读取摄像头帧ret, frame cap.read()# 在循环中&#xff0c;将每一帧作为图像输入&#xff0c;使用pyzbar的decode()函数识别二维码barcodes …...

网络安全(黑客)就业分析指导

一、针对网络安全市场分析 市场需求量高&#xff1b;则是发展相对成熟入门比较容易。所需要的技术水平国家政策环境 对于国家与企业的地位愈发重要&#xff0c;没有网络安全就没有国家安全 更有为国效力的正义黑客—红客联盟 可见其重视程度。 需要掌握的知识点偏多 外围打点…...

MySQL 主从复制的认识 2023.07.23

一、理解MySQL主从复制原理 1、概念&#xff1a;主从复制是用来建立一个和 主数据库完全一样的数据库环境称为从数据库&#xff1b;主数据库一般是准实时的业务数据库。 2、作用&#xff1a;灾备、数据分布、负载平衡、读写分离、提高并发能力 3、原理图 4、具体步骤 (1) M…...

elasticsearch查询操作(API方式)

说明&#xff1a;elasticsearch查询操作除了使用DSL语句的方式&#xff08;参考&#xff1a;http://t.csdn.cn/k7IGL&#xff09;&#xff0c;也可以使用API的方式。 准备 使用前需先导入依赖 <!--RestHighLevelClient依赖--><dependency><groupId>org.ela…...

Java版企业工程项目管理系统源码+java版本+项目模块功能清单+spring cloud +spring boot

工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#xff1a;实现对数据字典标签的增删改查操作 2、编码管理&#xff1a;实现对系统编码的增删改查操作 3、用户管理&#xff1a;管理和查看用户角色 4、菜单管理&#xff1a;实现对系统菜单的增删改查操…...

理解Android中不同的Context

作者&#xff1a;两日的blog Context是什么&#xff0c;有什么用 在Android开发中&#xff0c;Context是一个抽象类&#xff0c;它是Android应用程序环境的一部分。它提供了访问应用程序资源和执行各种操作的接口。可以说&#xff0c;Context是Android应用程序与系统环境进行交…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

32位寻址与64位寻址

32位寻址与64位寻址 32位寻址是什么&#xff1f; 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元&#xff08;地址&#xff09;&#xff0c;其核心含义与能力如下&#xff1a; 1. 核心定义 地址位宽&#xff1a;CPU或内存控制器用32位…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...