PyTorch quantization observer
文章目录
- PyTorch quantization observer
- basic class
- standard observer
- substandard observer
PyTorch quantization observer
basic class
| name | inherit | describe |
|---|---|---|
| ObserverBase | ABC, nn.Module | Base observer Module |
| UniformQuantizationObserverBase | ObserverBase |
standard observer
| name | inherit | describe |
|---|---|---|
| MinMaxObserver | UniformQuantizationObserverBase | computing the quantization parameters based on the running min and max values |
| MovingAverageMinMaxObserver | MinMaxObserver | computing the quantization parameters based on the moving average of the min and max values |
| PerChannelMinMaxObserver | UniformQuantizationObserverBase | computing the quantization parameters based on the running per channel min and max values |
| MovingAveragePerChannelMinMaxObserver | PerChannelMinMaxObserver | computing the quantization parameters based on the running per channel min and max values |
| HistogramObserver | UniformQuantizationObserverBase | records the running histogram of tensor values along with min/max values. |
| PlaceholderObserver | ObserverBase | doesn’t do anything and just passes its configuration to the quantized module’s .from_float(). |
| RecordingObserver | ObserverBase | mainly for debug and records the tensor values during runtime. |
| NoopObserver | ObserverBase | doesn’t do anything and just passes its configuration to the quantized module’s .from_float(). |
| FixedQParamsObserver | ObserverBase | |
| ReuseInputObserver | ObserverBase |
substandard observer
| name | inherit | describe |
|---|---|---|
| default_observer | MinMaxObserver | quant_min=0, quant_max=127 |
| default_placeholder_observer | PlaceholderObserver | Default placeholder observer, usually used for quantization to torch.float16. |
| default_debug_observer | RecordingObserver | Default debug-only observer. |
| default_weight_observer | MinMaxObserver | dtype=torch.qint8, qscheme=torch.per_tensor_symmetric |
| default_histogram_observer | HistogramObserver | quant_min=0, quant_max=127 |
| default_per_channel_weight_observer | PerChannelMinMaxObserver | dtype=torch.qint8, qscheme=torch.per_channel_symmetric |
| default_dynamic_quant_observer | PlaceholderObserver | dtype=torch.float, compute_dtype=torch.quint8 |
| default_float_qparams_observer | PerChannelMinMaxObserver | dtype=torch.quint8, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0 |
| weight_observer_range_neg_127_to_127 | MinMaxObserver | dtype=torch.qint8, qscheme=torch.per_tensor_symmetric, quant_min=-127, quant_max=127, eps=2 ** -12 |
| per_channel_weight_observer_range_neg_127_to_127 | MinMaxObserver | dtype=torch.qint8, qscheme=torch.per_channel_symmetric, quant_min=-127, quant_max=127, eps=2 ** -12 |
| default_float_qparams_observer_4bit | PerChannelMinMaxObserver | dtype=torch.quint4x2, qscheme=torch.per_channel_affine_float_qparams, ch_axis=0 |
| default_fixed_qparams_range_neg1to1_observer | FixedQParamsObserver | scale=2.0 / 256.0, zero_point=128, dtype=torch.quint8, quant_min=0, quant_max=255 |
| default_fixed_qparams_range_0to1_observer | FixedQParamsObserver | scale=1.0 / 256.0, zero_point=0, dtype=torch.quint8, quant_min=0, quant_max=255 |
| default_symmetric_fixed_qparams_observer | default_fixed_qparams_range_neg1to1_observer | |
| default_affine_fixed_qparams_observer | default_fixed_qparams_range_0to1_observer | |
| default_reuse_input_observer | ReuseInputObserver |
相关文章:
PyTorch quantization observer
文章目录 PyTorch quantization observerbasic classstandard observersubstandard observer PyTorch quantization observer basic class nameinheritdescribeObserverBaseABC, nn.ModuleBase observer ModuleUniformQuantizationObserverBaseObserverBase standard observ…...
垃圾回收之三色标记法(Tri-color Marking)
关于垃圾回收算法,基本就是那么几种:标记-清除、标记-复制、标记-整理。在此基础上可以增加分代(新生代/老年代),每代采取不同的回收算法,以提高整体的分配和回收效率。 无论使用哪种算法,标记…...
Individual household electric power consumption个人家庭用电量数据挖掘与时序预测建模
今天接到一个任务就是需要基于给定的数据集来进行数据挖掘分析相关的计算,并完成对未来时段内数据的预测建模,话不多少直接看内容。 官方数据详情介绍在这里,如下所示: 数据集中一共包含9个不同的字段,详情如下&#…...
实验三 贪心算法
实验三 贪心算法 迪杰斯特拉的贪心算法实现 优先队列等 1.实验目的 1、掌握贪心算法的基本要素 :最优子结构性质和贪心选择性质 2、应用优先队列求单源顶点的最短路径Dijkstra算法,掌握贪心算法。 2.实验环境 Java 3.问题描述 给定带权有向图G (V…...
详解go的hex.Encode原理
简言 今天看nsq的messageID生成的时候,发现它使用了hex.Encode函数来产生编码,那就顺道研究一下这个编码方式。 原理 hex是16进制的意思,encode是进行编码的意思,内部实现也很简单,就是 每4位计算出十六进制的值&a…...
R730服务器用光盘安装系统(Esxi系统)
准备阶段:dell R730服务器,本教程一般适用于dell所有服务器,移动光盘,光碟做好镜像系统。在这里我安装的系统是Esxi系统,其他操作系统类似,只是安装的步骤不一样而已。 1、将系统盘插入光驱(移动光盘)&…...
SpringCloud nacos 集成 gateway ,实现动态路由
🎈 作者:Linux猿 🎈 简介:CSDN博客专家🏆,华为云享专家🏆,Linux、C/C、云计算、物联网、面试、刷题、算法尽管咨询我,关注我,有问题私聊! &…...
flutter:角标
角标应该非常常见了,以小说app为例,通常会在小说封面的右上角上显示当前未读的章数。 badges 简介 Flutter的badges库是一个用于创建徽章组件的开源库。它提供了简单易用的API,使开发者可以轻松地在Flutter应用程序中添加徽章效果。 官方文…...
基于JAVA SpringBoot和Vue高考志愿填报辅助系统
随着信息技术在管理中的应用日益深入和广泛,管理信息系统的实施技术也越来越成熟,管理信息系统是一门不断发展的新学科,任何一个机构要想生存和发展,要想有机、高效地组织内部活动,就必须根据自身的特点进行管理信息时…...
[php-cos]ThinkPHP项目集成腾讯云储存对象COS
Cos技术文档 1、安装phpSdk 通过composer的方式安装。 1.1 在composer.json中添加 qcloud/cos-sdk-v5: >2.0 "require": {"php": ">7.2.5","topthink/framework": "^6.1.0","topthink/think-orm": "…...
DuckDB全面挑战SQLite
概要 当我们想要在具有嵌入式数据库的本地环境中工作时,我们倾向于默认使用 SQLite。虽然大多数情况下这都很好,但这就像骑自行车去 100 公里之外:可能不是最好的选择。 这篇文章中将讨论以下要点: • DuckDB 简介:它…...
Elasticsearch查询裁剪
如果source有成千上百个字段,查询的数据没法看 某些敏感字段不能随意展示 响应数据较大影响网络带宽 查看文档信息 查看ffbf索引id为123的文档信息 GET /ffbf/_doc/123返回结果 {"_index" : "ffbf","_type" : "_doc","_id&qu…...
Hadoop——Hive运行环境搭建
Windows:10 JDK:1.8 Apache Hadoop:2.7.0 Apache Hive:2.1.1 Apache Hive src:1.2.2 MySQL:5.7 1、下载 Hadoop搭建 Apache Hive 2.1.1:https://archive.a…...
(vue)vue项目中引入外部字体
(vue)vue项目中引入外部字体 效果: 第一步 放置字体包,在assets下创建一个fonts文件夹,放入下载的字体文件 第二步 创建一个font.css文件用于定义这个字体包的名字 第三步 在App.vue的css中将这个css文件引入 第四步 页面使用 font-famil…...
ChatGPT在语义理解和信息提取中的应用如何?
ChatGPT在语义理解和信息提取领域有着广泛的应用潜力。语义理解是指对文本进行深层次的理解,包括词义、句义和篇章义等层面的理解。信息提取是指从文本中自动抽取结构化的信息,如实体、关系、事件等。ChatGPT作为一种预训练语言模型,具有丰富…...
Mysql-主从复制与读写分离
Mysql 主从复制、读写分离 一、前言:二、主从复制原理1.MySQL的复制类型2. MySQL主从复制的工作过程;3.MySQL主从复制延迟4. MySQL 有几种同步方式:5.Mysql应用场景 三、主从复制实验1.主从服务器时间同步1.1 master服务器配置1.2 两台SLAVE服务器配置 2…...
算法练习(3):牛客在线编程04 堆/栈/队列
package jz.bm;import java.util.*;public class bm4 {/*** BM42 用两个栈实现队列*/Stack<Integer> stack1 new Stack<>();Stack<Integer> stack2 new Stack<>();public void push(int node) {stack1.push(node);}public int pop() {while (!stack1…...
mac下安装vue cli脚手架并搭建一个简易项目
目录 1、确定本电脑下node和npm版本是否为项目所需版本。 2、下载vue脚手架 3、创建项目 1、下载node。 如果有node,打开终端,输入node -v和npm -v , 确保node和npm的版本,(这里可以根据自己的需求去选择,如果对最新版本的内容有…...
尝试-InsCode Stable Diffusion 美图活动一期
一、 Stable Diffusion 模型在线使用地址: https://inscode.csdn.net/inscode/Stable-Diffusion 二、模型相关版本和参数配置: 活动地址 三、图片生成提示词与反向提示词: 提示词:realistic portrait painting of a japanese…...
【OpenGL学习】之着色器GLSL基础
基本类型: 类型说明void空类型,即不返回任何值bool布尔类型 true,falseint带符号的整数 signed integerfloat带符号的浮点数 floating scalarvec2, vec3, vec4n维浮点数向量 n-component floating point vectorbvec2, bvec3, bvec4n维布尔向量 Boolean vectorivec2, ivec3, iv…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
