当前位置: 首页 > news >正文

医学案例|ROC曲线之面积对比

一、案例介绍

为评价CT和CT增强对肝癌的诊断效果,共检查了32例患者,每例患者分别用两种方法检查,由医生盲态按4个等级诊断,最后经手术病理检查确诊其中有16例患有肝癌,评价CT个CT增强对肝癌是有有诊断效果并且试着比较两种诊断方式是否有差别。

二、问题分析

想要分析CT和CT增强对肝癌是有有诊断效果并且试判断两种诊断方式是否有差别,可以使用ROC模型,通过AUC面积判断CT和CT增强对肝癌是否有诊断作用,并且进行delong检验判断两者是否有差别,接下来进行说明。

三、软件操作及结果解读

(一) 数据导入

1.数据格式

首先将数据整理成正确的格式,一般一个X为一列,Y为一例,并且分析的数据带有数据标签的,需要另添加一个表格进行说明,数据格式如下(特别说明:SPSSAU默认的切割点为1):

2.导入数据

将整理好的数据上传至SPSSAU系统内,如下:

上传的数据如下:

(二)针对问题分析

  1. 软件操作
    ROC曲线分析路径为点击【可视化】→【ROC曲线】然后进行分析:

  1. 结果解读

SPSSAU默认以1作为切割点,即1作为阳性,其它作为阴性,首先查看下数据的分布,如下:

发现数据中阴性和阳性各占一半,数据分布均匀。

诊断价值判断:

从结果可以看出CT增强对应的AUC值为0.961,大于0.9,所以说明诊断价值高,并且从p值也能看出,p值小于0.05,说明CT增强对应的AUC值明显高于0.5。CT对应的AUC为0.811,大于0.7小于0.9说明有一定的诊断价值,p值小于0.05,说明CT对应的AUC值明显高于0.5。CT增强的AUC值大于CT,并且从ROC曲线也能观察得到。

其中横坐标为(1-特异性),纵坐标为敏感度,从ROC曲线可以看出CT增强与X轴所围面积远远大于CT与X轴所围面积。

两者比较:

上表格展示delong检验结果,一般可以观察95%的置信区间或者查看p值,如果查看95%的置信区间,置信区间不包括数字0则说明具有显著性差异,如果查看p值则小于显著水平则说明有显著性差异。上表格展示发现95%的置信区间不包括0,则说明两者之间具有显著性差异。并且模型的z值为2.1097,p值小于0.05,模型显著。并且AUC差值大于0,说明CT增强诊断效果比CT好。中间过程计算可以参考:

Z值计算如下:

四、结论

想要分析CT和CT增强对肝癌是有有诊断效果并且试判断两种诊断方式是否有差别,利用ROC曲线进行分析,CT增强对应的AUC值为0.961,大于0.9,所以说明诊断价值高,并且从p值也能看出,p值小于0.05,说明CT增强对应的AUC值明显高于0.5。CT对应的AUC为0.811,大于0.7小于0.9说明有一定的诊断价值,p值小于0.05,说明CT对应的AUC值明显高于0.5。CT增强的AUC值大于CT,并且经过delong检验模型的z值为2.1097,p值小于0.05,模型显著。并且AUC差值大于0,说明CT增强诊断效果比CT好。

五、知识小贴士

1、SPSSAU如何做delong检验对比?

SPSSAU进行ROC分析时,开始分析按钮右侧选中参数‘delong对比’即可输出delong检验两两配对比较结果,与此同时,SPSSAU直接可进行Hanley JA, McNeil BJ检验。通常情况下使用Delong检验较多。

2、特别注意

SPSSAU提供状态变量设置,事实上将Y拆分成两组,等于切割点为“阳性”,不等于切割点为“阴性”。默认切割点为数字1,此处通常情况下需要进行设置。

参考文献:

[1]孙振球.医学统计学.第3版[M].人民卫生出版社,2010.

相关文章:

医学案例|ROC曲线之面积对比

一、案例介绍 为评价CT和CT增强对肝癌的诊断效果,共检查了32例患者,每例患者分别用两种方法检查,由医生盲态按4个等级诊断,最后经手术病理检查确诊其中有16例患有肝癌,评价CT个CT增强对肝癌是有有诊断效果并且试着比较…...

Kotlin线程的基本用法

线程的基本用法 新建一个类继承自Thread,然后重写父类的run()方法 class MyThread : Thread() {override fun run() {// 编写具体的逻辑} }// 使用 MyThread().start()实现Runnable接口 class MyThread : Runnable {override fun run() {// 编写具体的逻辑} }// …...

2.03 PageHelper分页工具

步骤1&#xff1a;在application.yml中添加分页配置 # 分页插件配置 pagehelper:helperDialect: mysqlsupportMethodsArguments: true步骤2&#xff1a;在顶级工程pom文件下引入分页插件依赖 <!--5.PageHelper --> <dependency><groupId>com.github.pagehe…...

VUE中使用ElementUI组件的单选按钮el-radio-button实现第二点击时取消选择的功能

页面样式为&#xff1a; html 代码为&#xff1a; 日志等级&#xff1a; <el-radio-group v-model"logLevel"><el-radio-button label"DEBUG" click.native.prevent"changeLogLevel(DEBUG)">DEBUG</el-radio-button><el-r…...

瓴羊Quick BI:可视化大屏界面设计满足企业个性需求

大数据技术成为现阶段企业缩短与竞争对手之间差距的重要抓手&#xff0c;依托以瓴羊Quick BI为代表的工具开展内部数据处理分析工作&#xff0c;也成为诸多企业持续获取竞争优势的必由之路。早年间国内企业倾向于使用进口BI工具&#xff0c;但随着瓴羊Quick BI等一众国内数据处…...

617. 合并二叉树

题目 题解一&#xff1a;递归 /*** 递归* param root1* param root2* return*/public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {//结束条件if (root1 null) {return root2;} //结束条件if (root2 null) {return root1;}//两节点数值相加TreeNode me…...

【T1】存货成本异常、数量为零金额不为零的处理方法。

【问题描述】 使用T1飞跃专业版的过程中&#xff0c; 由于业务问题或者是操作问题&#xff0c; 经常会遇到某个商品成本异常不准确&#xff0c; 或者是遇到数量为0金额不为0的情况&#xff0c;需要将其成本调为0。 但是T1软件没有出入库调整单&#xff0c;并且结账无法针对数量…...

EtherNet IP转PROFINET网关连接西门子与欧姆龙方法

本文主要介绍了捷米特JM-PN-EIP&#xff08;EtherNet/IP转PROFINET&#xff09;网关西门子200智能PLC&#xff08;PROFINET&#xff09;和欧姆龙系统EtherNet/IP通信的配置过程。 1, 将 EDS 文件复制到欧姆龙软件的对应文件夹下 2, 首先添加捷米特JM-PN-EIP网关的全局变量&…...

低代码开发重要工具:jvs-flow(流程引擎)审批功能配置说明

流程引擎场景介绍 流程引擎基于一组节点与执行界面&#xff0c;通过人机交互的形式自动地执行和协调各个任务和活动。它可以实现任务的分配、协作、路由和跟踪。通过流程引擎&#xff0c;组织能够实现业务流程的优化、标准化和自动化&#xff0c;提高工作效率和质量。 在企业…...

[SQL挖掘机] - GROUP BY语句

介绍: group by 是 sql 中用于对结果集进行分组的关键字。通过使用 group by&#xff0c;可以根据一个或多个列的值将结果集中的行分组&#xff0c;并对每个分组应用某种聚合函数&#xff08;如 count、sum、avg 等&#xff09;以生成汇总信息。这样可以方便地对数据进行分类、…...

【ubuntu|内核】ubuntu 22.04修改内核为指定版本

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 ubuntu 22.04 安装指定内核 1. 正文 查看已安装的内核镜像 dpkg --get-selections | grep linux-image1.1 安装指定版本的内核 安装镜像 sudo apt-g…...

Carla教程一:动力学模型到LQR

Carla教程一、动力学模型到LQR 从运动学模型和动力学模型到LQR 模型就是可以描述车辆运动规律的模型。车辆建模都是基于自行车模型的设定,也就是将四个轮子抽象为自行车一样的两个轮子来建模。 1、运动学模型 运动学模型是基于几何关系分析出来的,一般适用于低俗情况下,…...

IDE/mingw下动态库(.dll和.a文件)的生成和部署使用(对比MSVC下.dll和.lib)

文章目录 概述问题的产生基于mingw的DLL动态库基于mingw的EXE可执行程序Makefile文件中使用Qt库的\*.a文件mingw下的*.a 文件 和 *.dll 到底谁起作用小插曲 mingw 生成的 \*.a文件到底是什么为啥mingw的dll可用以编译链接过程转换为lib引导文件 概述 本文介绍了 QtCreator mi…...

点击加号添加新的输入框

实现如上图的效果 html部分&#xff1a; <el-form-item class"forminput" v-for"(item,index) in formdata.description" :key"index" :label"描述(index1)" prop"description"><el-input v-model"formdata…...

SQL AND OR 运算符

AND & OR 运算符用于基于一个以上的条件对记录进行过滤。 如果第一个条件和第二个条件都成立&#xff0c;则 AND 运算符显示一条记录。 如果第一个条件和第二个条件中只要有一个成立&#xff0c;则 OR 运算符显示一条记录。 下面是选自 "students" 表的数据&a…...

6、C++内存模型

原文&#xff1a; https://my.oschina.net/u/2516597/blog/805489 背景 C11开始支持多线程&#xff0c;其中提供了原子类型atomic, 和atomic关系比较密切的是memory_order&#xff0c;所有的内存模型都是指atomic类型 enum memory_order {memory_order_relaxed,memory_order…...

上海市青少年算法2023年1月月赛(丙组)

上海市青少年算法2023年1月月赛(丙组)T1 实验日志 题目描述 小爱正在完成一个物理实验,为期n天,其中第i天,小爱会记录ai条实验数据在实验日志中。 已知小爱的实验日志每一页最多纪录m条数据,每天做完实验后他都会将日志合上,第二天,他便从第一页开始依次翻页,直到找到…...

移动开发之Wifi列表获取功能

一、场景 业务需要通过App给设备配置无线网络连接&#xff0c;所以需要App获取附近的WiFi列表&#xff0c;并进行网络连接验证。 二、安卓端实现 1、阅读谷歌官网文档&#xff0c;关于Wifi 接口使用 https://developer.android.com/guide/topics/connectivity/wifi-scan?hl…...

MyBatisPlus - 实体类 的 常用注解

TableName(“表名”) 假设 表名是 book&#xff0c;实体类类名是 Book MyBatisPlus会进行自动映射 但如果 表名是 tab_book&#xff0c;实体类类名是 Book 那么MyBatisPlus就无法进行自动映射&#xff0c;需要我们使用 TableName注解 去指定实体类对应的表 如下 TableNa…...

vue3+ts+elementui-plus二次封装树形表格实现不同层级展开收起的功能

一、TableTreeLevel组件 <template><div classmain><div class"btns"><el-button type"primary" click"expandLevel(1)">展开一级</el-button><el-button type"primary" click"expandLevel(2…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...