当前位置: 首页 > news >正文

OpenCV 对轮廓进行多边形逼近(Polygon Approximation)

在 OpenCV 中,cv::approxPolyDP 是一个函数,用于对轮廓进行多边形逼近(Polygon Approximation)。它可以将复杂的轮廓逼近为简化的多边形,从而减少轮廓的数据点,使轮廓更加紧凑。

函数原型如下:

cv::approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed);

参数说明:

  • curve: 输入的轮廓点,可以是一个 std::vector<cv::Point>cv::Mat 类型的数据。
  • approxCurve: 输出的多边形逼近点,返回一个 std::vector<cv::Point>cv::Mat 类型的数据,代表多边形逼近的点。
  • epsilon: 控制逼近精度的参数。较小的值会产生更精细的逼近,较大的值会产生更简化的逼近。
  • closed: 一个布尔值,用于指定多边形是否闭合。如果设置为 true,则多边形是闭合的,如果设置为 false,则多边形是非闭合的。

以下是一个简单的示例代码,演示如何使用 cv::approxPolyDP 对轮廓进行多边形逼近:

#include <opencv2/opencv.hpp>int main() {// 读取图像并转换为灰度图像cv::Mat image = cv::imread("path/to/your/image.jpg", cv::IMREAD_GRAYSCALE);// 二值化处理,将图像转换为黑白图像,以便寻找轮廓cv::Mat binary;cv::threshold(image, binary, 128, 255, cv::THRESH_BINARY);// 寻找轮廓std::vector<std::vector<cv::Point>> contours;cv::findContours(binary, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);// 多边形逼近std::vector<std::vector<cv::Point>> approxContours(contours.size());for (size_t i = 0; i < contours.size(); ++i) {cv::approxPolyDP(contours[i], approxContours[i], 5, true); // 使用 epsilon = 5 进行多边形逼近}// 绘制轮廓和多边形逼近cv::Mat result;cv::cvtColor(binary, result, cv::COLOR_GRAY2BGR);cv::drawContours(result, contours, -1, cv::Scalar(0, 0, 255), 2); // 绘制原始轮廓(红色)cv::drawContours(result, approxContours, -1, cv::Scalar(0, 255, 0), 2); // 绘制多边形逼近(绿色)// 显示结果cv::imshow("Original and Approximated Contours", result);cv::waitKey(0);return 0;
}

在上述示例中,我们首先读取图像并转换为灰度图像,然后进行二值化处理,找到图像中的轮廓。接着,使用 cv::approxPolyDP 对每个轮廓进行多边形逼近,并绘制原始轮廓(红色)和多边形逼近(绿色)的结果。

使用 Python 和 OpenCV 实现多边形逼近的示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图像
image = cv2.imread("path/to/your/image.jpg", cv2.IMREAD_GRAYSCALE)# 二值化处理,将图像转换为黑白图像,以便寻找轮廓
_, binary = cv2.threshold(image, 128, 255, cv2.THRESH_BINARY)# 寻找轮廓
contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 多边形逼近
approxContours = []
for contour in contours:epsilon = 0.01 * cv2.arcLength(contour, True) # epsilon 控制逼近精度的参数approx = cv2.approxPolyDP(contour, epsilon, True)approxContours.append(approx)# 绘制轮廓和多边形逼近
result = cv2.cvtColor(binary, cv2.COLOR_GRAY2BGR)
cv2.drawContours(result, contours, -1, (0, 0, 255), 2) # 绘制原始轮廓(红色)
cv2.drawContours(result, approxContours, -1, (0, 255, 0), 2) # 绘制多边形逼近(绿色)# 显示结果
cv2.imshow("Original and Approximated Contours", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

在 Python 版本的代码中,我们使用了 cv2.threshold 函数进行二值化处理,使用 cv2.findContours 函数找到图像中的轮廓,然后通过 cv2.approxPolyDP 函数对每个轮廓进行多边形逼近。最后,使用 cv2.drawContours 函数将原始轮廓和多边形逼近结果绘制在图像上,并显示结果。

Python 版本的代码与 C++ 版本的代码相比,在函数调用时稍有不同,但整体逻辑是相同的。

相关文章:

OpenCV 对轮廓进行多边形逼近(Polygon Approximation)

在 OpenCV 中&#xff0c;cv::approxPolyDP 是一个函数&#xff0c;用于对轮廓进行多边形逼近&#xff08;Polygon Approximation&#xff09;。它可以将复杂的轮廓逼近为简化的多边形&#xff0c;从而减少轮廓的数据点&#xff0c;使轮廓更加紧凑。 函数原型如下&#xff1a;…...

Docker的数据管理和Dockerfile的指令

Docker的数据管理 一、Docker数据的概念1、数据卷2、数据卷容器 二、端口映射三、容器互联&#xff08;使用centos镜像&#xff09;四、Docker 镜像的创建1、基于现有镜像创建&#xff08;1&#xff09;首先启动一个镜像&#xff0c;在容器里做修改&#xff08;2&#xff09;然…...

[SQL挖掘机] - 交叉连接: cross join

介绍: 交叉连接是一种多表连接方式&#xff0c;它返回两个表的笛卡尔积&#xff0c;即将一个表的每一行与另一个表的每一行进行组合。换句话说&#xff0c;交叉连接会生成一个包含所有可能组合的结果集。 交叉连接的工作原理如下&#xff1a;它会将左表的每一行与右表的每一行…...

Python web实战 | 使用 Django 搭建 Web 应用程序 【干货】

概要 从社交媒体到在线购物&#xff0c;从在线银行到在线医疗&#xff0c;Web 应用程序为人们提供了方便快捷的服务。Web 应用程序已经成为了人们日常生活中不可或缺的一部分。搭建一个高效、稳定、易用的 Web 应用程序并不是一件容易的事情。本文将介绍如何使用 Django 快速搭…...

UE5自定义蓝图节点(二)

继承于UBlueprintAsyncActionBase的类&#xff0c;异步输出节点的实现方法&#xff0c;代码测试正常 .h // Fill out your copyright notice in the Description page of Project Settings.#pragma once#include "CoreMinimal.h" #include "Kismet/BlueprintA…...

Bean容器中的ThreadPoolTaskExecutor需要手动关闭吗

ThreadPoolTaskExecutor 是 Spring 提供的一个方便的线程池实现&#xff0c;用于异步执行任务或处理并发请求。 在使用 ThreadPoolTaskExecutor 作为 Spring Bean 注册到容器中后&#xff0c;Spring 会负责在应用程序关闭时自动关闭所有注册的线程池&#xff0c;所以不需要手动…...

Redis学习路线(3)——Redis的Java客户端

一、如何使用Redis的Java客户端 官方文档&#xff1a; https://redis.io/docs/clients/java/ Java-Redis客户端使用场景Jeids 以Redis命令作为方法名称&#xff0c;学习成本低&#xff0c;简单实现&#xff0c;但是Jedis实例是线程不安全的&#xff0c;多线程环境下需要基于连…...

行车遥控接线图

这个一般只有电工才会用。 主要是 【共线和总电】让人疑惑。 这图实际就是PLC的梯形图。 共电&#xff1a;接主电源。【它串联10A保险丝&#xff0c;再到继电器】 总电&#xff1a;它是所有继电器的公共端。【共电的继电器吸合&#xff0c;共电和总电就直通了。】共电的继电器…...

区块链实验室(11) - PBFT耗时与流量特征

以前面仿真程序为例&#xff0c;分析PBFT的耗时与流量特征。实验如下&#xff0c;100个节点构成1个无标度网络&#xff0c;节点最小度为5&#xff0c;最大度为38. 从每个节点发起1次交易共识。统计每次交易的耗时以及流量。本文所述的流量见前述仿真程序的说明:区块链实验室(3)…...

Shell编程基础(三)环境变量 位置变量 系统内置变量

环境变量 & 环境变量环境变量范围父子进程之间有效指定用户有效所有用户有效 位置变量系统内置变量 环境变量 在脚本种直接定义的变量&#xff0c;只能在当前shell进程中使用 若想要在其他shell进程中使用&#xff0c;可以将变量声明为 环境变量 export 变量名 &#xff…...

P5718 【深基4.例2】找最小值

题目描述 给出 n n n 和 n n n 个整数 a i a_i ai​&#xff0c;求这 n n n 个整数中最小值是什么。 输入格式 第一行输入一个正整数 n n n&#xff0c;表示数字个数。 第二行输入 n n n 个非负整数&#xff0c;表示 a 1 , a 2 … a n a_1,a_2 \dots a_n a1​,a2​……...

C++——STL容器之list链表的讲解

目录 一.list的介绍 二.list类成员函数的讲解 2.2迭代器 三.添加删除数据&#xff1a; 3.1添加&#xff1a; 3.2删除数据 四.排序及去重函数&#xff1a; 错误案例如下&#xff1a; 方法如下&#xff1a; 一.list的介绍 list列表是序列容器&#xff0c;允许在序列内的任何…...

使用for循环输出左上三角、右上三角、左下三角、右下三角、上下三角

1、输出如下图形&#xff1a; #include<stdio.h> int main() {/*输出图形 666666666666666*/for(int i1;i<5;i){for(int j1;j<i;j){putchar(6);}printf("\n"); } return 0; } 2、输出如下图形&#xff1a; #include<stdio.h> int main() {/*输出图…...

CAXA中.exb或者.dwg文件保存为PDF

通常CAXAZ中的文件为.exb或者.dwg格式&#xff0c;我们想打印或者保存为PDF文件格式&#xff0c;那么就用一下的方法&#xff1a; CAXA文件如图所示&#xff1a; 框选出你要打印的图纸&#xff01;&#xff01;&#xff01;&#xff01; 我们选择"菜单"->"…...

华为刷题:HJ3明明随机数

import java.util.Scanner;// 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main {public static void main(String[] args) {Scanner scan new Scanner(System.in);int N scan.nextInt();int[] arr new int[N];for (int i 0; i < N; i) {int n sca…...

ENVI提取NDVI与植被覆盖度估算

目标是通过ENVI计算植被覆盖度结合ArcGIS出图得到植被覆盖图。 一、植被覆盖度的定义: 植被覆盖度( FractionalVegetation Cover,FVC) 通常定义为植被( 包括叶、茎、枝) 在地面的垂直投影面积占统计区总面积的百分比,它量化了植被的茂密程度,反应了植被的生长态势,是刻画…...

Arm 扩大开源合作伙伴关系,加强投入开放协作

作者&#xff1a;Arm 开源软件副总裁 Mark Hambleton Arm 和我们的生态系统的关键信念之一是与开源社区合作&#xff0c;共创一个高度发达的 Arm 架构&#xff0c;使软件的落地更加稳定&#xff0c;从而让全球数百万开发者能够测试并创建自己的应用。 为此&#xff0c;Arm 支…...

Kubernetes 的核心概念:Pod、Service 和 Namespace 解析

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…...

互联网搜索的学习笔记

1. 参考资料 《Internet Search Tips》《Google Search Operators: The Complete List (42 Advanced Operators)》 2. 预备知识 2.1 查询语法 2.1.1 -&#xff1a;排除符 用于排除指定关键字。例如&#xff0c;如果想搜索“苹果”但不想看到“苹果手机”的结果&#xff0c;…...

vue事件修饰符

vue事件修饰符 1、目标2、语法 1、目标 在事件后面.修饰符名-给事件带来强大功能 2、语法 事件名.修饰符“methods里的函数” 修饰符列表 .stop - 阻止事件冒泡 示例&#xff1a; <template><div id"app"><div click"fatherFn"><…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...