当前位置: 首页 > news >正文

【多模态】19、RegionCLIP | 基于 Region 来实现视觉语言模型预训练

在这里插入图片描述

文章目录

    • 一、背景
    • 二、方法
      • 2.1 Region-based Language-Image Pretraining
      • 2.2 目标检测的迁移学习
    • 三、效果
      • 3.1 数据集
      • 3.2 实现细节
      • 3.3 结果

论文: RegionCLIP: Region-based Language-Image Pretraining

代码:https://github.com/microsoft/RegionCLIP

出处:CVPR2022 Oral | 微软 | 张鹏川

一、背景

近期,视觉-语言模型取得了很大的突破,如 CLIP 和 ALIGN,这些模型使用了极大的图文对儿来学习图像和文本的匹配,并且在很多无手工标签的情况下也取得了很好的效果。

为了探索这种思路能否在 region-caption 的情况下起作用,作者基于预训练好的 CLIP 模型构建了一个 R-CNN 形式的目标检测器。

主要思路:

  • 先从输入图像中抠出候选区域
  • 然后使用 CLIP 模型将抠出的区域和 text embedding 进行匹配

在这里插入图片描述

  • 图 1 a-b 展示了在 LVIS 上的结果,当使用 proposal 作为输入时,CLIP 的得分无法代码定位的质量,可以看出不准的框得分为 65%,较准的框得分为 55%。
  • 图 1b 中对比了使用 gt 框作为输入,CLIP 在 LVIS 框上的分类准确率只有 19%
  • 所以,直接将预训练好的 CLIP 拿来用于对 region 的分类不太适合

作者想探索一下这种差别来源于哪里?

  • 首先可以想到,CLIP 模型的训练是使用整个 image 作为输入的,使用的是 image-level 的文本描述来训练的,所以,模型学习到的是整张图的特征
  • 所以这种模型无法将文本概念和图像中的区域联系起来

本文如何解决 image 和 region 之间的差距:

  • 作者通过使用 vision-language 预训练的模型来探索如何学习 region 的表达
  • 主要思想是在预训练过程中,将 image region 和 text token 进行对齐

面临的问题:

  • image-text pairs 中不包含 image region 和 text token 的对齐关系
  • 整张图的文本描述是不全的,也就是图中的有些目标是没有体现在文本描述中的

二、方法

在这里插入图片描述
本文的目标是学习一个区域级别的视觉-语义空间,能够覆盖足够丰富的目标词汇且用于开放词汇目标检测

  • 假设文本描述 t 能够描述图像 I 中的区域 r
  • 在视觉-语义空间,从 r 中抽取到的 visual region representation 能够和 text representation 很好的匹配上

总体框架图如图 2:

  • V t V_t Vt :CLIP 的 visual encoder, L L L :CLIP 的 language encoder
  • V V V:本文需要训练的 visual encoder,使用 V t V_t Vt 进行初始化,
  • 我们的目标是训练一个 visual encoder V V V 类实现对 image region 的编码,并且将这些编码和 language encoder 输出的语言编码对齐
  • 为了克服缺少大规模 region 描述的问题,如图 2 底部,作者构建了一个目标词汇池,通过将词汇填入 prompt 来构建 region 的描述,并且借助 teacher encoder V t V_t Vt 来将这些描述和使用图像定位网络得到的图像区域进行对齐
  • 通过使用这些创建的 region-text pairs,visual encoder V V V 就需要通过对比学习和词汇整理来学习将这些 pairs 对齐

2.1 Region-based Language-Image Pretraining

1、Visual region representation

可以使用现有的目标定位器(如 RPN)或密集滑动窗口 来进行图像区域的生成

作者使用经过人工标注 bbox 训练过的 RPN 来生成,这里不对 bbox 的类别进行区分

  • 对于一个输入 batch,使用 RPN 产生 N 个 image regions
  • 使用 visual encoder V V V 进行视觉特征抽取,并使用 RoIAlign 来 pooling,且 V V V 的权重是使用 teacher V t V_t Vt 的来进行初始化的

2、Semantic region representation

一个单个的图像通常会包含丰富的语义信息,多个不同类别的目标,且人工标注这么大规模哦对数据也不太可行

所以,作者首先构建了一个大的词汇池,来尽可能的覆盖所有区域词汇,如图 2 所示,而且建立的词汇池是从文本语料库中解析得来的

有了词汇池后,按照如下的方式来构建每个区域的语义表达:

  • 第一步,将 concept 填入 prompt 模版(a photo of a kite)
  • 第二步,使用预训练的 language encoder L 来得到语义特征表达
  • 最后,使用语义编码就能表达每个区域词汇的特征表达 { l j } j = 1 , . . . , C \{l_j\}_{j=1,...,C} {lj}j=1,...,C

3、visual-semantic alignment for regions

① 如何对齐 region-text pairs:使用 CLIP 来构建伪标签,即使用 teacher model CLIP 预测的得分最大的 concept 作为该区域的描述

  • 作者借用 teacher visual encoder 来建立 region-text 之间的关系,这里的 text 表示语义编码,区域 r i r_i ri 的 visual representation v i t v_i^t vit 是从 teacher visual encoder V t V_t Vt 中抽取的

  • 然后,计算 v i t v_i^t vit { l j } \{l_j\} {lj} 的匹配得分,得分最高的就和区域进行关联起来,然后就能得到每个区域的伪标签: { v i , l m } \{v_i, l_m\} {vi,lm}

    在这里插入图片描述

② 如何预训练:

  • 同时使用来自网络的 region-text pairs 和 image-text pairs

  • region-text pairs 就是通过 ① 的方法来创建的

  • 拿到上述 region-text pairs { v i , l m } \{v_i, l_m\} {vi,lm},使用对比学习 loss 和蒸馏 loss 来训练 visual decoder,总共包含 3 部分

    在这里插入图片描述

    • region-text 的对比学习 loss 如下, τ \tau τ 是预定义的温度参数, N r i N_{ri} Nri 是 region r i r_i ri 的 negative textual samples,也就是在一个 batch 中和 region r i r_i ri 不匹配但和其他区域匹配的

      在这里插入图片描述

      在这里插入图片描述

    • 除了对比学习 loss 以外,还有考虑每个图像区域的知识蒸馏,蒸馏 loss 如下, q i t q_i^t qit 是从 teacher model 得到的 soft target, q i q_i qi 是 student model 得到的预测

      在这里插入图片描述

    • image-text 的对比学习 loss L c n t r s t − i m g L_{cntrst-img} Lcntrstimg 可以从 region level 扩展而来,也就是特殊情况,即 ① 一个 box 覆盖了整张图,② 文本描述来源于网络,③ negative samples 是从其他图像而来的文本描述

零样本推理

预训练之后,训练得到的 visual encoder 可以直接用于 region reasoning 任务,比如从 RPN 获得区域,从训练的 visual encoder 得到该区域的视觉表达,然后和文本词汇表达进行匹配,得到相似度最高的文本

实验证明使用 RPN score 能够提升 zero-shot 推理的效果,所以作者也使用了 RPN objectness score + category confidence score 的均值来作为最终的得分,用于匹配。

2.2 目标检测的迁移学习

预训练中,本文的 visual encoder 是从 teacher model 提供的 region-text alignment 中学习的,不需要人为一些操作,所以也会有一个噪声,当引入更强的监督信号(如人为标注 label)时,可以进一步 fine-tuning visual encoder,如图 2

如何将预训练网络迁移到目标检测器呢,作者通过初始化目标检测器的 visual backbone 来实现,先使用现有的 RPN 网络来进行目标区域的定位,然后将区域和文本匹配

开放词汇目标检测:

  • 对基础类别,使用类似于 focal loss 的加权权重 ( 1 − p b ) γ (1-p^b) \gamma (1pb)γ p b p^b pb 是预测的概率, γ \gamma γ 是超参数,该加权权重能缓解模型对预训练中的知识的遗忘,尤其是当数据集中有很少的基础类时(如 coco),作者猜测如果基础类别很少,模型可能会对基础类别过拟合,对新类的泛化能力会降低
  • 对背景类别,作者使用固定的 all-zero 编码方式,并且使用预定义的权重

三、效果

3.1 数据集

预训练时,作者使用:

  • 来自于 Conceptual Caption dataset (CC3M) 的 image-text pairs,包括 300 万来自网络的 pairs
  • COCO Caption(COCO Cap),包含 118k images,每个 images 约有 5 个人工标注的 captions
  • 作者从 COCO/CC3M 中抽取了目标词汇,过滤掉了出现频次小于 100 的词汇,得到了 4764/6790 个词汇

为了开放词汇目标检测的迁移学习,作者使用 COCO 数据集和 LVIS 数据集的基础类来训练。

  • COCO:48 个基础类,17 个新类
  • LVIS:866 个基础类,337 个新类

作者使用目标检测标准测评:AP 和 AP50

  • COCO:使用 AP50 测评新类、基础类、所有类
  • LVIS:rare 类也就是 novel 类,即测评新类的 AP (APr)、基础类的 AP (APc/APf)、所有类的 AP (mAP)

3.2 实现细节

1、预训练

  • teacher model 和 student model :都是预训练的 CLIP(ResNet50)
  • RPN:使用 LVIS 的基础类别训练
  • 默认模型:使用 CC3M 数据集,使用从 COCO Cap 解析出来的词汇
  • 优化器: SGD、batch = 96、learning rate = 0.002, maximum iteration = 600k、 100 regions per image.

2、目标检测迁移

  • 使用 detectron2 基于 Faster RCNN [42] with ResNet50-C4 结构作为检测器
  • RPN:使用目标数据集的基础类别来训练
  • SGD:batch=16,initial learning = 0.002,1x schedule
  • focal scaling: γ = 0.5 \gamma=0.5 γ=0.5

3、目标检测零样本推理

  • RPN:使用 LVIS 的基础类别训练得到的 RPN
  • NMS:threshold=0.9
  • τ = 0.01 \tau=0.01 τ=0.01

3.3 结果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

【多模态】19、RegionCLIP | 基于 Region 来实现视觉语言模型预训练

文章目录 一、背景二、方法2.1 Region-based Language-Image Pretraining2.2 目标检测的迁移学习 三、效果3.1 数据集3.2 实现细节3.3 结果 论文: RegionCLIP: Region-based Language-Image Pretraining 代码:https://github.com/microsoft/RegionCLIP …...

本地文件夹上传到Github

本地文件夹上传到Github 步骤1. 下载git步骤2. 在github中新建一个库(Repository)步骤3. 设置SSH key步骤4. 添加SSH keys步骤5. 本地文件上传到github参考 步骤1. 下载git 下载git客户端,并在本地安装完成。 步骤2. 在github中新建一个库&a…...

云原生|kubernetes|kubernetes集群部署神器kubekey安装部署高可用k8s集群(半离线形式)

前言: 云原生|kubernetes|kubernetes集群部署神器kubekey的初步使用(centos7下的kubekey使用)_晚风_END的博客-CSDN博客 前面利用kubekey部署了一个简单的非高可用,etcd单实例的kubernetes集群,经过研究,…...

Vite + Vue3 +TS 项目router配置踩坑记录! ===>“找不到模块“vue-router”或其相应的类型声明。“<===

目录 第一个坑:"找不到模块“vue-router”或其相应的类型声明。" 解决 第二个坑:Cannot read properties of undefined (reading push) 解决:将useRouter()方法的执行位置尽量放靠上一点就行了。 最近在使用vite vue3 types…...

windows安装npm, 命令简介

安装步骤 要在Windows上安装npm,按照以下步骤操作: 首先,确保您已经在计算机上安装了Node.js。可以从Node.js官方网站(Node.js)下载并安装Node.js。完成Node.js的安装后,打开命令提示符(Command…...

微信聊天记录监管有多重要?

在现代企业中,微信成为了主流的沟通工具。越来越多企业开始关注员工聊天记录的监管问题,因为这直接关系到信息泄露的风险。监管员工聊天记录可以保障公司形象、保护员工的安全,并有助于提高员工的工作效率。 监管员工聊天记录到底有多重要&am…...

【数据结构】实验十:哈夫曼编码

实验十 哈夫曼编码 一、实验目的与要求 1)掌握树、森林与二叉树的转换; 2)掌握哈夫曼树和哈夫曼编码算法的实现; 二、 实验内容 1. 请编程实现如图所示的树转化为二叉树。 2. 编程实现一个哈夫曼编码系统,系统功能…...

Linux-head

Linux命令&#xff1a;head命令详解 概述&#xff1a;head命令用于显示文件文字区块 1、格式 head 【参数】【文件】 2、参数 -q 隐藏文件名   -v 显示文件名   -c<字节> 显示字节数   -n<行数> 显示的行数 [rootwww ~]# head [-n number] 文件 选项与参…...

HHDESK便捷功能介绍三

1 连接便捷显示 工作中&#xff0c;往往需要设置很多资源连接。而过多的连接设&#xff0c;往往很容易混淆。 在HHDESK中&#xff0c;当鼠标点击连接时&#xff0c;会在下方显示本连接的参数&#xff0c;方便用户查看。 2 日志查看 实际工作中&#xff0c;查看日志是一件很…...

小试梯度下降算法

参考资料&#xff1a; 随机梯度下降法_通俗易懂讲解梯度下降法_weixin_39653442的博客-CSDN博客 梯度下降(Gradient Descent)_AI耽误的大厨的博客-CSDN博客 梯度下降法_踢开新世界的大门的博客-CSDN博客 仅做学习笔记 #给定样本求最佳 w 与 b import matplotlib.pyplot as…...

【React】版本正确安装echarts-liquidfill(水球图表)包引入不成功问题

目标效果图&#xff1a; 安装&#xff1a; npm install echarts npm install echarts-liquidfill 引入&#xff1a; Import:import * as echarts from echarts; import echarts-liquidfill 或 import echarts-liquidfill/src/liquidFill.jsOr:import * as echarts from…...

Debian 11 编译安装 git 2.42.0(基于 OpenSSL)

git 克隆远程仓库时默认使用 gnutls&#xff0c;正常情况下没有任何问题。当使用 gitlab 时&#xff0c;如果把 gitlab 放在代理后面&#xff08;如&#xff1a;放在 nginx 后面&#xff09;&#xff0c;则可能会出问题。例如报错&#xff1a;gnutls_handshake() failed: Hands…...

将Linux init进程设置为systemd

在Linux操作系统中&#xff0c;init进程是系统启动的第一个进程。然而&#xff0c;随着系统的发展&#xff0c;新的init进程systemd已经逐渐取代了旧的init进程。如果想要将Linux init进程设置为systemd&#xff0c;可以按照以下步骤操作&#xff1a; 首先&#xff0c;需要检查…...

element-ui form表单的动态rules校验

在vue 项目中&#xff0c;有时候可能会用到element-ui form表单的动态rules校验&#xff0c;比如说选择了哪个选项&#xff0c;然后动态显示或者禁用等等。 我们可以巧妙的运用element-ui form表单里面form-item想的校验规则来处理&#xff08;每一个form-item项都可以单独校验…...

AGI如何提高智力水平

AGI&#xff08;Artificial General Intelligence&#xff09;是一种新型的人工智能系统&#xff0c;具有人类智能的多个方面&#xff0c;能够在各种不同的任务和环境中进行决策和执行。要提高AGI的智力水平&#xff0c;需要从多个方面进行研究和改进。 改进算法和模型&#x…...

【广州华锐互动】无人值守变电站AR虚拟测控平台

无人值守变电站AR虚拟测控平台是一种基于增强现实技术的电力设备巡检系统&#xff0c;它可以利用增强现实技术将虚拟信息叠加在真实场景中&#xff0c;帮助巡检人员更加高效地完成巡检任务。这种系统的出现&#xff0c;不仅提高了巡检效率和准确性&#xff0c;还降低了巡检成本…...

【C语言】文件操作(二)

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …...

Kotlin小节

1、Kotlin只提供引用类型这一种数据类型。 2、和!的含义 计算两个实例是否指向同一引用 ! 计算两个实例是否不指向同一引用 3、条件表达式给变量赋值 var healthstr if(health 100)"It is excellent" else "It is awful" 4、when表达式 是Kotlin的另…...

西安电子科技大学

前言 本篇文章投稿与以下活动 【西安城市开发者社区】探索西安高校&#xff1a;展现历史与创新的魅力 资料参考与百度百科 学校简介 西安电子科技大学&#xff08;Xidian University&#xff09;&#xff0c;简称“西电”&#xff0c;位于陕西省西安市&#xff0c;是中央部…...

【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

一、说明 在深入研究和比较算法之前&#xff0c;让我们独立回顾一下它们。请注意&#xff0c;本文的目的不是深入解释每种算法&#xff0c;而是比较它们的目标和结果。 如果您想了解更多关于PCA和ZCA之间的区别&#xff0c;请查看我之前基于numpy的帖子&#xff1a; PCA 美白与…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...