【4】-多个User执行测试
目录
一个locustfile中有多个User
使用--class-picker指定执行
小结
一个locustfile中有多个User
from locust import task, HttpUserclass User01(HttpUser):weight = 3 # 权重host = 'https://www.baidu.com'@taskdef user_01_task(self):self.client.get(url='/', name='user_01_task')class User02(HttpUser):weight = 1 # 权重host = 'https://www.qq.com'@taskdef user_02_task(self):self.client.get(url='/', name='user_02_task')
- 两个User定义了
host
,运行时就可以不填host - 定义了
weight
,和上一节task设置到权重一样,运行时user分配比重按照3:1执行
- 执行结果
使用--class-picker指定执行
- 运行locust的命令使用--class-picker参数,启动web-ui时可以手动选择执行的UserClasses
$ locust -f locustfiles/multiple_user.py --class-picker
- 如果是no-ui模式下,也可以在命令中直接指定执行的UserClasses,例如
$ locust -f locustfiles/multiple_user.py --class-picker User02 User01 --headless -u 20 -r 20 -t 5s
[2023-07-28 12:17:00,956] HUAWEI-MateBook-X-Pro.local/INFO/locust.runners: Ramping to 20 users at a rate of 20.00 per second
[2023-07-28 12:17:00,957] HUAWEI-MateBook-X-Pro.local/INFO/locust.runners: All users spawned: {"User01": 15, "User02": 5} (20 total users)
- 命令参数解释一下
- --headless no-ui模式执行,并且立即开始测试
- -u 指定运行最大并发用户数
- -r 每秒启动用户数
- -t 执行测试的时长
小结
- 一个locustfile中可以定义多个测试User类,默认执行比例都是1:1,可使用
weight
属性修改它们的执行比重 - 当一个locustfile中有多个User类,可以使用--class-picker命令参数来选择到底执行哪些User类来执行测试
- 这里提到了no-ui执行,因为一般到实际工作我们压测是在云服务器执行,locust一样提供了--headless命令来通过no-ui执行
- User类中给host赋值后,我们不需要在运行时再给locust设置host
- locust的更多使用命令参数,建议可以仔细阅读一遍,通过
locust -h
来查看
以下是我收集到的比较好的学习教程资源,虽然不是什么很值钱的东西,如果你刚好需要,可以评论区,留言【777】直接拿走就好了
各位想获取资料的朋友请点赞 + 评论 + 收藏,三连!
三连之后我会在评论区挨个私信发给你们~
相关文章:

【4】-多个User执行测试
目录 一个locustfile中有多个User 使用--class-picker指定执行 小结 一个locustfile中有多个User from locust import task, HttpUserclass User01(HttpUser):weight 3 # 权重host https://www.baidu.comtaskdef user_01_task(self):self.client.get(url/, nameuser_01_…...
基于Eisvogel模板的Markdown导出PDF方法
Requirements 模板地址:Wandmalfarbe/pandoc-latex-template Pandoc:Pandoc官网 Latex环境:例如TexLive Pandoc参数 --template"模板存放位置" --listings --pdf-enginexelatex --highlight-style kate -V CJKmainfontSimSun -V C…...

linux服务器安装redis
一、安装下载 下载安装参考文章 下载安装包地址:https://download.redis.io/releases/ 亲测有效,但是启动的步骤有一些问题 安装完成!!! 二、启动 有三种启动方式 默认启动指定配置启动开机自启 说明:…...
QT中信号和槽本质
信号 信号的本质就是事件 在QT中信号的发出者是某个实例化的类对象,对象内部可以进行相关事件的检测。 槽 槽函数是一类特殊的功能的函数,也可以作为类的普通成员函数来使用 在Qt中槽函数的所有者也是某个类的实例对象。 信号和槽的关系 在Qt中我…...

layui各种事件无效(例如表格重载或 分页插件按钮失效)的解决方法
下图是我一个系统的操作日志,在分页插件右下角嵌入了一个导出所有数据的按钮 ,代码没有任何问题,点击导出按钮却失效 排查之后,发现表格标签table定义了ID又定义了lay-filter,因我使用的layui从2.7.6升级到2.8.11&…...

flutter开发实战-父子Widget组件调用方法
flutter开发实战-父子Widget组件调用方法 在最近开发中遇到了需要父组件调用子组件方法,子组件调用父组件的方法。这里记录一下方案。 一、使用GlobalKey 父组件使用globalKey.currentState调用子组件具体方法,子组件通过方法回调callback方法调用父组…...

策略模式的实现与应用:掌握灵活算法切换的技巧
文章目录 常用的设计模式有以下几种:一.创建型模式(Creational Patterns):二.结构型模式(Structural Patterns):三.行为型模式(Behavioral Patterns):四.并发…...

当ChatGPT应用在汽车行业,具体有哪些场景?
ChatGPT有潜力彻底改变汽车行业并将其提升到新的高度。在ChatGPT的加持下,该行业的多个领域都将取得重大变化。 利用ChatGPT作更高级的虚拟助理 你可能用过现有的虚拟助理,它们一系列的回复有时候让人不得不感叹一句“人工智障”!然而&a…...
行为型-中介者模式(Mediator Pattern)
概述 中介者模式(Mediator Pattern)是一种行为型设计模式,它通过封装一系列对象之间的交互方式,使这些对象能够互相通信而不需要直接相互引用。中介者模式通过集中控制对象的交互,使得对象之间的耦合度降低࿰…...

Kibana+Prometheus+node_exporter 监控告警部署
下载好三个软件包 一、prometheus安装部署 1、解压 linxxubuntu:~/module$ tar -xvf prometheus-2.45.0-rc.0.linux-amd64.tar.gz 2、修改配置文件的IP地址 # my global config global:scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is ever…...
【前端知识】JavaScript——设计模式(工厂模式、构造函数模式、原型模式)
【前端知识】JavaScript——设计模式(工厂模式、构造函数模式、原型模式) 一、工厂模式 工厂模式是一种众所周知的设计模式,广泛应用于软件工程领域,用于抽象创建特定对象的过程。 优点:可以解决创建多个类似对象的…...
未来的算法备案法规:创新和安全如何兼顾?
随着科技的快速发展,算法正逐步渗透到我们生活的各个方面,从推荐引擎到自动驾驶,从医疗诊断到金融交易,这一现象既充满希望,也充满了挑战。其中一个关键的挑战就是如何设计和实施有效的算法备案法规,以促进…...

pycharm 使用远程服务器 jupyter (本地jupyter同理)
1. 远程服务器miniconda 环境中创建jupyter环境 # 1. 激活环境 conda activate envname#2. 在环境中安装jupyter pip install jupyter # 或者 conda install jupyter#3. 生成jupyter_notebook_config.py文件 jupyter notebook --generate-config#4. 设置密码 jupyter noteboo…...

leetcode 376. 摆动序列
2023.7.28 本题思路是定义一个 direct变量记录上一次摆动是上坡还是下坡 。 然后在一个for循环中循环判断当前摆动和上一次摆动是否一致,如果不一致则视为一次摆动。 如果前后元素值相等得话,直接continue进入下一次循环。 下面看代码: clas…...

【图像处理】使用自动编码器进行图像降噪(改进版)
阿里雷扎凯沙瓦尔兹 一、说明 自动编码器是一种学习压缩和重建输入数据的神经网络。它由一个将数据压缩为低维表示的编码器和一个从压缩表示中重建原始数据的解码器组成。该模型使用无监督学习进行训练,旨在最小化输入和重建输出之间的差异。自动编码器可用于降维、…...
MySQL大数据量分页查询方法及其优化
---方法1: 直接使用数据库提供的SQL语句 ---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N ---适应场景: 适用于数据量较少的情况(元组百/千级) ---原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). L…...
dataTable转成对象、json、list
datatable转换成list集合 public static T TableToEntity<T>(DataTable dt, int rowindex 0, bool isStoreDB true){Type type typeof(T);T entity Activator.CreateInstance<T>();if (dt null){return entity;}DataRow row dt.Rows[rowindex];PropertyInfo…...

ubuntu环境安装centos7虚拟机网络主机不可达,ping不通
【NAT模式下解决】1.首先vi /etc/sysconfig/network-scripts/ifcfg-ens33检查ONBOOTyes,保存 2.输入systemctl restart network命令重启网关...

STN:Spatial Transformer Networks
1.Abstract 卷积神经网络缺乏对输入数据保持空间不变的能力,导致模型性能下降。作者提出了一种新的可学习模块,STN。这个可微模块可以插入现有的卷积结构中,使神经网络能够根据特征图像本身,主动地对特征图像进行空间变换&#x…...

C语言学习笔记 VScode设置C环境-06
目录 一、下载vscode软件 二、安装minGW软件 三、VS Code安装C/C插件 3.1 搜索并安装C/C插件 3.2 配置C/C环境 总结 一、下载vscode软件 在官网上下载最新的版本 Download Visual Studio Code - Mac, Linux, Windowshttps://code.visualstudio.com/download 二、安装minGW…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
SpringAI实战:ChatModel智能对话全解
一、引言:Spring AI 与 Chat Model 的核心价值 🚀 在 Java 生态中集成大模型能力,Spring AI 提供了高效的解决方案 🤖。其中 Chat Model 作为核心交互组件,通过标准化接口简化了与大语言模型(LLM࿰…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

倒装芯片凸点成型工艺
UBM(Under Bump Metallization)与Bump(焊球)形成工艺流程。我们可以将整张流程图分为三大阶段来理解: 🔧 一、UBM(Under Bump Metallization)工艺流程(黄色区域ÿ…...

海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...