当前位置: 首页 > news >正文

自然语言处理从入门到应用——LangChain:模型(Models)-[文本嵌入模型Ⅰ]

分类目录:《自然语言处理从入门到应用》总目录


本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商,如:OpenAI、Cohere、Hugging Face等,这个类旨在为所有这些提供一个标准接口。

嵌入创建文本的向量表示会很有用,因为这意味着我们可以在向量空间中表示文本,并执行类似语义搜索这样的操作。LangChain中的基本Embedding类公开两种方法:

  • embed_documents:适用于多个文档
  • embed_query:适用于单个文档

将这两种方法作为两种不同的方法的另一个原因是一些嵌入提供商对于需要搜索的文档和查询(搜索查询本身)具有不同的嵌入方法,下面是文本嵌入的集成示例:

Aleph Alpha

使用Aleph Alpha的语义嵌入有两种可能的方法。如果我们有不同结构的文本(例如文档和查询),则我们使用非对称嵌入。相反,对于具有可比结构的文本,则建议使用对称嵌入的方法:

非对称
from langchain.embeddings import AlephAlphaAsymmetricSemanticEmbedding
document = "This is a content of the document"
query = "What is the content of the document?"
embeddings = AlephAlphaAsymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([document])
query_result = embeddings.embed_query(query)
对称
from langchain.embeddings import AlephAlphaSymmetricSemanticEmbedding
text = "This is a test text"
embeddings = AlephAlphaSymmetricSemanticEmbedding()
doc_result = embeddings.embed_documents([text])
query_result = embeddings.embed_query(text)

Amazon Bedrock

Amazon Bedrock是一个完全托管的服务,通过API提供了来自领先AI初创公司和亚马逊的FMs,因此您可以从广泛的FMs中选择最适合您的用例的模型。

%pip install boto3
from langchain.embeddings import BedrockEmbeddingsembeddings = BedrockEmbeddings(credentials_profile_name="bedrock-admin")
embeddings.embed_query("This is a content of the document")
embeddings.embed_documents(["This is a content of the document"])

Azure OpenAI

我们加载OpenAI Embedding类,并设置环境变量以指示使用Azure端点。

# 设置用于 OpenAI 包的环境变量,以指示使用 Azure 端点
import osos.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
from langchain.embeddings import OpenAIEmbeddingsembeddings = OpenAIEmbeddings(deployment="your-embeddings-deployment-name")
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

Cohere

我们加载Cohere Embedding类:

from langchain.embeddings import CohereEmbeddings
embeddings = CohereEmbeddings(cohere_api_key=cohere_api_key)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

DashScope

我们加载DashScope嵌入类:

from langchain.embeddings import DashScopeEmbeddings
embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')
text = "This is a test document."
query_result = embeddings.embed_query(text)
print(query_result)
doc_results = embeddings.embed_documents(["foo"])
print(doc_results)

Elasticsearch

使用Elasticsearch中托管的嵌入模型生成嵌入的操作步骤。通过下面的方式,可以很容易地实例化ElasticsearchEmbeddings类。如果我们使用的是Elastic Cloud,则可以使用from_credentials构造函数,如果我们使用的是Elasticsearch集群,则可以使用from_es_connection构造函数:

!pip -q install elasticsearch langchain
import elasticsearch
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
# 定义模型 ID
model_id = 'your_model_id'

如果我们希望使用from_credentials进行测试,那么我们需要Elastic Cloud的cloud_id:

# 使用凭据实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_credentials(model_id,es_cloud_id='your_cloud_id', es_user='your_user', es_password='your_password'
)# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

同时,我们可以使用现有的Elasticsearch客户端连接进行测试,这可用于任何Elasticsearch部署:

# 创建 Elasticsearch 连接
es_connection = Elasticsearch(hosts=['https://es_cluster_url:port'], basic_auth=('user', 'password')
)
# 使用 es_connection 实例化 ElasticsearchEmbeddings
embeddings = ElasticsearchEmbeddings.from_es_connection(model_id,es_connection,
)
# 为多个文档创建嵌入
documents = ['This is an example document.', 'Another example document to generate embeddings for.'
]
document_embeddings = embeddings.embed_documents(documents)# 打印文档嵌入
for i, embedding in enumerate(document_embeddings):print(f"文档 {i+1} 的嵌入:{embedding}")# 为单个查询创建嵌入
query = 'This is a single query.'
query_embedding = embeddings.embed_query(query)# 打印查询嵌入
print(f"查询的嵌入:{query_embedding}")

参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关文章:

自然语言处理从入门到应用——LangChain:模型(Models)-[文本嵌入模型Ⅰ]

分类目录&#xff1a;《自然语言处理从入门到应用》总目录 本文将介绍如何在LangChain中使用Embedding类。Embedding类是一种与嵌入交互的类。有很多嵌入提供商&#xff0c;如&#xff1a;OpenAI、Cohere、Hugging Face等&#xff0c;这个类旨在为所有这些提供一个标准接口。 …...

使用Gradio构建生成式AI应用程序; Stability AI推出Stable Diffusion XL 1.0

&#x1f989; AI新闻 &#x1f680; Stability AI推出最先进的AI工具Stable Diffusion XL 1.0 摘要&#xff1a;Stability AI宣布推出Stable Diffusion XL 1.0&#xff0c;该版本是其迄今为止最先进的AI工具。Stable Diffusion XL 1.0提供更鲜艳、更准确的图片生成&#xff…...

Java 递归计算斐波那契数列指定位置上的数字

Java 递归计算斐波那契数列指定位置上的数字 一、原理二、代码实现三、运行结果 一、原理 斐波那契数列&#xff08;Fibonacci sequence&#xff09;&#xff0c;又称黄金分割数列&#xff0c;因数学家莱昂纳多斐波那契&#xff08;Leonardo Fibonacci&#xff09;以兔子繁殖为…...

ai数字人透明屏的应用场景有哪些?

AI数字人透明屏的应用场景&#xff1a; 银行、保险、售楼处等接待场景&#xff1a;AI数字人透明屏可以作为接待员&#xff0c;提供详细的信息和导航&#xff0c;提高客户体验和服务效率。 商业街、购物中心等场所&#xff1a;AI数字人透明屏可以作为导购员&#xff0c;提供商品…...

一、1、Hadoop的安装与环境配置

安装JDK&#xff1a; 首先检查Java是否已经安装&#xff1a; java -version 如果没有安装&#xff0c;点击链接https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 并选择相应系统以及位数下载&#xff08;本文选择jdk-8u381-linux-x64…...

剑指YOLOv7改进最新MPDIoU损失函数(23年7月首发论文):论文实测YOLOv7模型涨点,超越现有多种G/D/C/EIoU,高效准确的边界框回归的损失

💡本篇内容:剑指YOLOv7改进最新MPDIoU损失函数(23年7月首发论文):论文实测YOLOv7模型涨点,超越现有多种G/D/C/EIoU,高效准确的边界框回归的损失 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv7 按步骤操作运行改进后的代码即可 💡:重点:该专栏《剑指YOLOv7原…...

前端JavaScript面试100问(上)

1、解释一下什么是闭包 ? 闭包&#xff1a;就是能够读取外层函数内部变量的函数。闭包需要满足三个条件&#xff1a; 访问所在作用域&#xff1b;函数嵌套&#xff1b;在所在作用域外被调用 。 优点&#xff1a; 可以重复使用变量&#xff0c;并且不会造成变量污染 。缺点&am…...

C语言第九课------------------数组----------------C中之将

作者前言 作者介绍&#xff1a; 作者id&#xff1a;老秦包你会&#xff0c; 简单介绍&#xff1a; 喜欢学习C语言和python等编程语言&#xff0c;是一位爱分享的博主&#xff0c;有兴趣的小可爱可以来互讨 个人主页::小小页面 gitee页面:秦大大 一个爱分享的小博主 欢迎小可爱…...

MySQL的安装

掌握在Windows系统中安装MySQL数据库 MySQL的介绍 MySQL数据库管理系统由瑞典的DataKonsultAB公司研发&#xff0c;该公司被Sun公司收购&#xff0c;现在Sun公司又被Oracle公司收购&#xff0c;因此MySQL目前属于 Oracle 旗下产品。MySQL 软件采用了双授权政策&#xff0c;分…...

在Chrome(谷歌浏览器)中安装Vue.js devtools开发者工具及解决Vue.js not detected报错

文章目录 一、Vue.js devtools开发者工具安装1.打开谷歌浏览器——点击扩展程序——选择管理扩展程序2.先下载添加一个谷歌助手到扩展程序中&#xff08;根据提示进行永久激活&#xff09;3.点击谷歌浏览器的应用商店4.输入Vue.js devtools——搜索——选择下载 二、解决Vue.js…...

用Python实现概率矩阵分解(PMF)算法在MovieLens ml-100k数据集上构建精确的推荐系统:深入理解GroupLens数据的操作

第一部分:推荐系统的重要性以及概率矩阵分解的介绍 在如今的数字化时代,推荐系统在我们的日常生活中起着重要的作用。无论我们在哪个电商网站上购物,哪个音乐平台听歌,或者在哪个电影网站看电影,都会看到推荐系统的身影。它们根据我们的喜好和行为,向我们推荐可能喜欢的…...

WPF icon的设置

想给控件设置个圆形图片&#xff0c;代码如下&#xff1a; ​<Setter Property"Icon"><Setter.Value><Image Source"/WpfApp1;component/Resource/1.ico" Width"16" Height"16"/></Setter.Value></Setter&…...

使用frp中的xtcp映射穿透指定服务实现不依赖公网ip网速的内网穿透p2p

使用frp中的xtcp映射穿透指定服务实现不依赖公网ip网速的内网穿透p2p 管理员Ubuntu配置公网服务端frps配置service自启(可选) 配置内网服务端frpc配置service自启(可选) 使用者配置service自启(可选) 效果 通过frp实现内网client访问另外一个内网服务器 管理员 1&#xff09;…...

2023-07-28 LeetCode每日一题(并行课程 III)

2023-07-28每日一题 一、题目编号 2050. 并行课程 III二、题目链接 点击跳转到题目位置 三、题目描述 给你一个整数 n &#xff0c;表示有 n 节课&#xff0c;课程编号从 1 到 n 。同时给你一个二维整数数组 relations &#xff0c;其中 relations[j] [prevCoursej, next…...

8.11 PowerBI系列之DAX函数专题-TopN中实现N的动态

需求 实现 1 ranking by amount rankx(allselected(order_2[产品名称]),[total amount]) 2 rowshowing_boolean var v_ranking [ranking by amount] var v_topN-no [topN参数 值] var v_result int( v_ranking < v_topN_no) return v_result 3 将度量值2放入视觉对象筛…...

后端性能测试的类型

目录 性能测试的类型 负载测试(load testing) 压力测试(Stress Testing) 可扩展性测试( 尖峰测试(Spike Testing) 耐久性测试(Endurance Testing) 并发测试(Concurrency Testing) 容量测试(Capacity Testing) 资料获取方法 性能测试的类型 性能测试&#xff1a;确定软…...

关闭Tomcat的日志输出

要关闭Tomcat的日志输出&#xff0c;您可以在Tomcat的配置文件中进行相应的调整。具体地说&#xff0c;您可以通过修改logging.properties文件来关闭Tomcat的日志输出。这个文件通常位于Tomcat的conf目录下。请按照以下步骤进行&#xff1a; 打开Tomcat安装目录&#xff0c;找…...

express 路由匹配和数据获取

express配置路由只需要通过app.method(url,func)来配置&#xff0c;其中url配置和其中的参数获取方法不同 直接写全路径 路由中允许存在. get请求传入的参数 router.get("/home", (req, res) > {res.status(200).send(req.query); });通过/home?a1会收到对象…...

62 | Python 操作 PDF

文章目录 Python 操作 PDF 教程1. 安装 PyPDF22. 读取 PDF 文件3. 创建 PDF 文件4. 修改 PDF 文件练习题1. 创建一个新的 PDF 文件,其中包含两个页面。第一个页面包含一段文本和一张图片,第二个页面包含一个表格。2. 打开练习题中创建的 PDF 文件,并将第一个页面中的文本修改…...

[SQL挖掘机] - 左连接: left join

介绍: 左连接是一种多表连接方式&#xff0c;它以左侧的表为基础&#xff0c;并返回满足连接条件的匹配行以及左侧表中的所有行&#xff0c;即使右侧的表中没有匹配的行。左连接将左表的每一行与右表进行比较&#xff0c;并根据连接条件返回结果集。 左连接的工作原理如下&am…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...