当前位置: 首页 > news >正文

Pytorch(一)

目录

一、基本操作

二、自动求导机制

 三、线性回归DEMO

3.1模型的读取与保存

3.2利用GPU训练时

四、常见的Tensor形式

五、Hub模块


一、基本操作

操作代码如下:

import torch
import numpy as np#创建一个矩阵
x1 = torch.empty(5,3)# 随机值
x2 = torch.rand(5,3)# 初始化一个全零的矩阵
x3 = torch.zeros(5,3,dtype = torch.long)# view操作改变矩阵维度
x4 = torch.randn(4,4) #4*4矩阵
y = x4.view(16) #变成一行的矩阵
z = x4.view(-1,8) #变为2*8的矩阵
print(y.size()) #矩阵的尺寸#与numpy的协同操作
# tensor转array
a = torch.ones(5)
b = a.numpy()# array转tensor
a1 = np.ones(5)
b1 = torch.from_numpy(a)

二、自动求导机制

案例代码如下:

 

import torch#计算流程
x = torch.rand(1)
b = torch.rand(1,requires_grad=True)
w = torch.rand(1,requires_grad=True)
y = w * x
z = y + b# 反向传播计算
z.backward(retain_graph = True)
print(w.grad)
print(b.grad)

 三、线性回归DEMO

 

import numpy as np
import torch
import torch.nn as nn# 构建线性回归模型
class LinearRegressionModel(nn.Module):def __init__(self,input_dim,output_dim):super(LinearRegressionModel,self).__init__()self.linear = nn.Linear(input_dim,output_dim)def forward(self,x):out = self.linear(x)return outx_values = [i for i in range(11)]
x_train = np.array(x_values,dtype=np.float32)
x_train = x_train.reshape(-1,1)
print(x_train.shape)#y = 2x + 1
y_values = [2*i + 1 for i in range(11)]
y_train = np.array(x_values,dtype=np.float32)
y_train = x_train.reshape(-1,1)# 构建model
input_dim = 1
output_dim = 1model = LinearRegressionModel(input_dim,output_dim)# 指定好参数和损失函数
epochs = 1000 #训练次数
learning_rate = 0.01 #学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate) #优化器
criterion = nn.MSELoss() #损失函数# 训练模型
for epoch in range(epochs):epoch += 1#注意转行为tensorinputs = torch.from_numpy(x_train)labels = torch.from_numpy(y_train)#梯度要清零每一次迭代optimizer.zero_grad()#前向传播outputs = model(inputs)#计算损失loss = criterion(outputs,labels)#反向传播loss.backward()#更新权重参数optimizer.step()if epoch % 50 ==0:print('epoch {},loss {}'.format(epoch,loss.item()))

3.1模型的读取与保存

# 模型的保存与读取
torch.save(model.state.dict(),'model.pkl') #保存
model.load_state_dict(torch.load('model.pkl')) #读取

3.2利用GPU训练时

利用GPU训练时要将数据与模型导入cuda

#注意转行为tensor
inputs = torch.from_numpy(x_train)
labels = torch.from_numpy(y_train)
#利用GPU训练数据时的数据
inputs = torch.from_numpy(x_train).to(device)
labels = torch.from_numpy(y_train).to(device)model = LinearRegressionModel(input_dim,output_dim)#使用GPU进行训练
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

四、常见的Tensor形式

  • 1.scalar:通常是指一个数值
  • 2.vector:通常是指一个向量
  • 3.matrix:通常是指一个数据矩阵
  • 4.n-dimensional tensor:高维数据

五、Hub模块

Github地址:https://github.com/pytorch/hub

Hub已有模型:https://pytorch.org/hub/research-models

相关文章:

Pytorch(一)

目录 一、基本操作 二、自动求导机制 三、线性回归DEMO 3.1模型的读取与保存 3.2利用GPU训练时 四、常见的Tensor形式 五、Hub模块 一、基本操作 操作代码如下: import torch import numpy as np#创建一个矩阵 x1 torch.empty(5,3)# 随机值 x2 torch.rand(5,3)# 初始化…...

图数据库Neo4j学习三——cypher语法总结

1MATCH 1.1作用 MATCH是Cypher查询语言中用于从图数据库中检索数据的关键字。它的作用是在图中查找满足指定条件的节点和边,并返回这些节点和边的属性信息。 在MATCH语句中,通过节点标签和边类型来限定查找范围,然后通过WHERE语句来筛选符合…...

2023杭电多校第一场部分题解

还有些没补的题以后回来补。 索引 1001100210031005100910101012 1001 感觉是大暴力题,数据范围给的很小所以每次可以暴力求出两人的路径。枚举路径的交集里的点然后看看两个人在这个点相遇需要的最短时间就可以了。确定了具体的点之后求 4 4 4 次exgcd即可知道答…...

算法38:反转链表【O(n)方案】

一、需求 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 示例 1: 输入:head [1,2,3,4,5] 输出:[5,4,3,2,1] 示例 2: 输入:head [1,2] 输出:[2,1] 示例3&#xff…...

redis基本架构:一个键值数据库包含什么?(这篇文章主要是一个引导的作用)

我们设计一个简单的smpliekv数据库,来体验简直数据库包含什么 体来说,一个键值数据库包括了访问框架、索引模块、操作模块和存储模块四部分(见 下图)。接下来,我们就从这四个部分入手,继续构建我们的 Simpl…...

HIS信息管理系统 HIS源码

HIS(Hospital Information System)是覆盖医院所有业务和业务全过程的信息管理系统。 HIS系统以财务信息、病人信息和物资信息为主线,通过对信息的收集、存储、传递、统计、分析、综合查询、报表输出和信息共享,及时为医院领导及各…...

微信小程序之富文本那些事

文章目录 前言一、video的处理二、img的处理总结 前言 小程序中使用富文本编辑器,由于rich-text受限 部分富文本内容无法渲染或排版错乱。以img和video为例,处理起来让人头疼。网上各种长篇大论,实际上没有任何帮助。接下来我们就一起聊聊im…...

kaggle新赛:RSNA 2023 腹部创伤检测大赛赛题解析(CV)

赛题名称:RSNA 2023 Abdominal Trauma Detection 赛题链接: https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection 赛题背景 腹部钝力创伤是最常见的创伤性损伤类型之一,最常见的原因是机动车事故。腹部创伤可能导致…...

【JavaEE初阶】Servlet (二) Servlet中常用的API

文章目录 HttpServlet核心方法 HttpServletRequest核心方法 HttpServletResponse核心方法 Servlet中常用的API有以下三个: HttpServletHttpServletRequestHttpServletResponse HttpServlet 我们写 Servlet 代码的时候, 首先第一步就是先创建类, 继承自 HttpServlet, 并重写其…...

redis 存储原理与数据模型

文章目录 一、redis的存储结构1.1 存储结构1.2 存储转换 二、字典(dict)实现2.1 数据结构2.2 哈希冲突2.3 扩容2.4 缩容2.5 渐进式rehash2.6 scan 命令2.7 expire机制 三、跳表(skiplist)实现3.1 理想跳表3.2 redis跳表 一、redis的存储结构 1.1 存储结构 1.2 存储转换 二、字…...

初识mysql数据库之事务的隔离性

目录 一、理解隔离性 二、隔离级别 1. 不同的隔离级别的简单概述 2. 查看隔离级别 2.1 查看全局隔离级别 2.2 查看会话隔离级别 3. 设置隔离界别 4. 读未提交(Read Uncommitted) 4.1 读未提交测试 5. 读提交(Read Committed&#x…...

今天学学消息队列RocketMQ:消息类型

RocketMQ支持的消息类型有三种:普通消息、顺序消息、延时消息、事务消息。以下内容的代码部分都是基于rocketmq-spring-boot-starter做的。 普通消息 普通消息是一种无序消息,消息分布在各个MessageQueue当中,以保证效率为第一使命。这种消息…...

小程序附件下载并预览功能

一、实现的功能: 1、word、excel、图片等实现下载并预览 2、打开文件后显示文件名称 二、代码: // 判断文件类型whatFileType(url) {let sr url.lastIndexOf("."); // 最后一次出现的位置let fileType url.substr(sr 1); // 截取url的…...

数据库缓存服务——NoSQL之Redis配置与优化

目录 一、缓存概念 1.1 系统缓存 1.2 缓存保存位置及分层结构 1.2.1 DNS缓存 1.2.2 应用层缓存 1.2.3 数据层缓存 1.2.4 硬件缓存 二、关系型数据库与非关系型数据库 2.1 关系型数据库 2.2 非关系型数据库 2.3 关系型数据库和非关系型数据库区别: 2.4 非…...

【雕爷学编程】MicroPython动手做(13)——掌控板之RGB三色灯

知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…...

.Net Core上传组件_.Net Core图片上传组件_Uploader7.0

一、.Net Core上传组件Uploader7.0简介 1.当前版本v7.0,前端框架丰富升级 2.前端jquery框架封装,cover.js, 腾讯云cos-js-sdk-v5.min.js 3.后端,支持Asp.Net 和 Asp.Net Core 矿建 4.数据传输模式支持:WebScoket 、Ajax、Form 模式上传到…...

Exadata磁盘损坏导致磁盘组无法mount恢复(oracle一体机磁盘组异常恢复)---惜分飞

Oracle Exadata客户,在换盘过程中,cell节点又一块磁盘损坏,导致datac1磁盘组(该磁盘组是normal方式冗余)无法mount Thu Jul 20 22:01:21 2023 SQL> alter diskgroup datac1 mount force NOTE: cache registered group DATAC1 number1 incarn0x0728ad12 NOTE: ca…...

左值引用与右值引用的区别?右值引用的意义?

左值引用与右值引用的区别?右值引用的意义? 1 区别1.1 功能差异1.2 左值引用1.3 右值引用1.3.1 实现移动语义1.3.2 实现完美转发 2 引用的作用3 区分左值和右值3.1 左值3.2 右值 1 区别 左值引用是对左值的引用;右值引用是对右值的引用。 &…...

2023年深圳杯数学建模D题基于机理的致伤工具推断

2023年深圳杯数学建模 D题 基于机理的致伤工具推断 原题再现: 致伤工具的推断一直是法医工作中的热点和难点。由于作用位置、作用方式的不同,相同的致伤工具在人体组织上会形成不同的损伤形态,不同的致伤工具也可能形成相同的损伤形态。致伤…...

Vue的router学习

,前端路由的核心是什么呢?改变URL,但是页面不进行整体的刷新。 vue-router是基于路由和组件的  路由用于设定访问路径, 将路径和组件映射起来;  在vue-router的单页面应用中, 页面的路径的改变就是组件的切换; 使用router需要…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...