当前位置: 首页 > article >正文

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录

      • A 论文出处
      • B 背景
        • B.1 背景介绍
        • B.2 问题提出
        • B.3 创新点
      • C 模型结构
      • D 实验设计
      • E 个人总结

A 论文出处

  • 论文题目:FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models
  • 发表情况:2023-EMNLP
  • 作者单位:浙江大学、网易

B 背景

B.1 背景介绍

传统的主动学习,降低了第一步的标注成本,通过迭代标注小部分数据,然后通过模型的Uncertainty(或Feature-based Diversity)进行校验,筛选剩余有价值的样本进行再标注。但仍存在两个问题,首先是少量标注其实很难训练很好的模型,影响后续筛选的步骤,其次传统AL还是需要大量的人力成本,目前的AL论文大部分都需要标注10%~50%以上的数据才能达到较好的性能。

B.2 问题提出

(1)大模型:可以用Zero/few-shot ICL解决下游任务,人力标注几乎为0,但光靠大模型部署成本较高,效果不总是尽如人意;

(2)小模型:直接用小模型需要收集很多标注数据,人力成本更高。但可以使用半监督、主动学习缓解一下标注成本,但总是需要一定的人力成本。

B.3 创新点

(1)在没有任何人为监督的情况下,提高大模型的泛化能力;

(2)大模型+小模型的协同学习方法FreeAL,大模型用来主动标注,小模型用来过滤和反馈。

C 模型结构

(1)LLM通过自生成的虚拟样本对未标注的数据进行打标,形成初始的标注数据集;

(2)SLM对于LLM的标注结果进行筛选过滤,得到clean set用于LLM进行ICL;

  1. 训练预热(Warm-up Training)
    SLM使用LLM生成的初始伪标签进行少量周期的标准训练(如交叉熵损失),目的是让模型初步学习数据中的简单模式,避免过早陷入噪声样本的过拟合。
  2. 损失计算与排序(Loss Calculation and Ranking)
    对每个训练样本计算交叉熵损失值 l i l_i li,并按类别对损失值进行升序排序。损失值较低的样本表明SLM对其预测置信度较高,可能对应LLM生成的更准确的伪标签。
  3. 类别内筛选(Class-wise Selection)
    对每个类别 j j j 的样本集合 D t r a i n j \mathcal{D}_{train}^j Dtrainj,选择损失值最小的前 R % R\% R%(如论文中设 R = 20 R=20 R=20 )的样本,构成初步的干净子集 D c l e a n j \mathcal{D}_{clean}^j Dcleanj,确保每个类别都有一定比例的“高置信度”样本被保留。
  4. 聚类去冗余(Clustering for Diversity)
    使用k-medoids算法 D c l e a n j \mathcal{D}_{clean}^j Dcleanj 中样本的嵌入表示(如SLM的隐藏层输出)进行聚类,选择每个簇的中心样本(medoids)作为最终演示池 D d e m o j \mathcal{D}_{{demo}}^j Ddemoj 。这保证了演示样本的多样性和代表性,避免冗余。
  5. 合并与反馈(Aggregation and Feedback)
    将所有类别的演示池合并为 D d e m o = ∪ D d e m o j \mathcal{D}_{{demo}}=\cup\mathcal{D}_{{demo}}^j Ddemo=Ddemoj ,并反馈给LLM用于后续的标签优化。未被选中的样本则交由 D n o i s y \mathcal{D}_{{noisy}} Dnoisy LLM通过上下文学习重新标注。

D 实验设计

(1)多次迭代性能提升

(2)相较于ICL的性能提升

E 个人总结

(1)数据标注依然重要,完全监督、弱监督的小模型在很多场景下比(未精调)大模型强;

(2)利用LLM进行标注是完全可行的,小模型可以协同进行过滤、精炼大模型的标签;

(3) 该方法的核心在于用LLM完全替代人类进行样本选择,但LLM固有的不确定性、偏见和“幻觉”问题可能导致其选择的样本质量不稳定,甚至引入错误或次优的标注,反而损害最终模型性能;

(4)论文中展示的有效性可能高度依赖于特定的数据集、任务或使用的LLM,其提出的“完全无人”流程在更复杂、动态或领域外(OOD)的真实世界场景中的鲁棒性和泛化能力尚未得到充分验证。

相关文章:

【自然语言处理】大模型时代的数据标注(主动学习)

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构D 实验设计E 个人总结 A 论文出处 论文题目:FreeAL: Towards Human-Free Active Learning in the Era of Large Language Models发表情况:2023-EMNLP作者单位:浙江大…...

React与原生事件:核心差异与性能对比解析

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...

Go 并发编程基础:select 多路复用

select 是 Go 并发编程中非常强大的语法结构,它允许程序同时等待多个通道操作的完成,从而实现多路复用机制,是协程调度、超时控制、通道竞争等场景的核心工具。 一、什么是 select select 类似于 switch 语句,但它用于监听多个通…...

暴雨新专利解决服务器噪音与性能悖论

6月1日,我国首部数据中心绿色化评价方面国家标准《绿色数据中心评价》正式实施,为我国数据中心的绿色低碳建设提供了明确指引。《评价》首次将噪音控制纳入国家级绿色评价体系,要求从设计隔声结构到运维定期监测实现闭环管控,加速…...

Go 语言中的内置运算符

1. 算术运算符 注意: (自增)和--(自减)在 Go 语言中是单独的语句,并不是运算符。 package mainimport "fmt"func main() {fmt.Println("103", 103) // 13fmt.Println("10-3…...

Spring Boot 中实现 HTTPS 加密通信及常见问题排查指南

Spring Boot 中实现 HTTPS 加密通信及常见问题排查指南 在金融行业安全审计中,未启用HTTPS的Web应用被列为高危漏洞。通过正确配置HTTPS,可将中间人攻击风险降低98%——本文将全面解析Spring Boot中HTTPS的实现方案与实战避坑指南。 一、HTTPS 核心原理与…...

项目研究:使用 LangGraph 构建智能客服代理

概述 本教程展示了如何使用 LangGraph 构建一个智能客服代理。LangGraph 是一个强大的工具,可用于构建复杂的语言模型工作流。该代理可以自动分类用户问题、分析情绪,并根据需要生成回应或升级处理。 背景动机 在当今节奏飞快的商业环境中&#xff0c…...

JS面试常见问题——数据类型篇

这几周在进行系统的复习,这一篇来说一下自己复习的JS数据结构的常见面试题中比较重要的一部分 文章目录 一、JavaScript有哪些数据类型二、数据类型检测的方法1. typeof2. instanceof3. constructor4. Object.prototype.toString.call()5. type null会被判断为Obje…...

创客匠人:如何通过创始人IP打造实现知识变现与IP变现的长效增长?

在流量红利逐渐消退的当下,创始人IP的价值愈发凸显。它不仅能够帮助中小企业及个人创业者突破竞争壁垒,还能成为企业品牌影响力的核心资产。然而,市场上IP孵化机构鱼龙混杂,如何选择一家真正具备长期价值的合作伙伴?创…...

【靶场】XXE-Lab xxe漏洞

前言 学习xxe漏洞,搭了个XXE-Lab的靶场 一、搭建靶场 现在需要登录,不知道用户名密码,先随便试试抓包 二、判断是否存在xxe漏洞 1.首先登录抓包 看到xml数据解析,由此判断和xxe漏洞有关,但还不确定xxe漏洞是否存在。 2.尝试xxe 漏洞 判断是否存在xxe漏洞 A.send to …...

开源项目实战学习之YOLO11:12.6 ultralytics-models-tiny_encoder.py

👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 👉 欢迎关注,了解更多精彩内容 ultralytics-models-sam 1.sam-modules-tiny_encoder.py2.数据处理流程3.代码架构图(类层次与依赖)blocks.py: 定义模型中的各种模块结构 ,如卷积块、残差块等基础构建…...

Python[数据结构及算法 --- 栈]

一.栈的概念 在 Python 中,栈(Stack)是一种 “ 后进先出(LIFO)”的数据结构,仅允许在栈顶进行插入(push)和删除(pop)操作。 二.栈的抽象数据类型 1.抽象数…...

Unity VR/MR开发-开发环境准备

视频讲解链接: 【XR马斯维】UnityVR/MR开发环境准备【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

2025-06-08-深度学习网络介绍(语义分割,实例分割,目标检测)

深度学习网络介绍(语义分割,实例分割,目标检测) 前言 在开始这篇文章之前,我们得首先弄明白,什么是图像分割? 我们知道一个图像只不过是许多像素的集合。图像分割分类是对图像中属于特定类别的像素进行分类的过程,即像素级别的…...

Caliper 配置文件解析:config.yaml 和 fisco-bcos.json 附加在caliper中执行不同的合约方法

Caliper 配置文件解析:config.yaml 和 fisco-bcos.json Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO…...

【Ragflow】26.RagflowPlus(v0.4.0):完善解析逻辑/文档撰写模式全新升级

概述 在历经半个月的间歇性开发后,RagflowPlus再次迎来一轮升级,正式发布v0.4.0。 开源地址:https://github.com/zstar1003/ragflow-plus 更新方法 下载仓库最新代码: git clone https://github.com/zstar1003/ragflow-plus.…...

智能照明系统:具备认知能力的“光神经网络”

智能照明系统是物联网技术与传统照明深度融合的产物,其本质是通过感知环境、解析需求、自主决策的闭环控制,重构光与人、空间、环境的关系。这一系统由智能光源、多维传感器、边缘计算单元及云端管理平台构成,形成具备认知能力的“光神经网络…...

ubuntu系统 | docker+dify+ollama+deepseek搭建本地应用

1、docker 介绍与安装 docker安装:1、Ubuntu系统安装docker_ubuntu docker run-CSDN博客 docker介绍及镜像源配置:2、ubuntu系统docker介绍及镜像源和仓库配置-CSDN博客 docker常用命令:3、ubuntu系统docker常用命令-CSDN博客 docker compose安装:4、docker compose-CS…...

Docker 镜像上传到 AWS ECR:从构建到推送的全流程

一、在 EC2 实例中安装 Docker(适用于 Amazon Linux 2) 步骤 1:连接到 EC2 实例 ssh -i your-key.pem ec2-useryour-ec2-public-ip步骤 2:安装 Docker sudo yum update -y sudo amazon-linux-extras enable docker sudo yum in…...

SpringSecurity+vue通用权限系统

SpringSecurityvue通用权限系统 采用主流的技术栈实现,Mysql数据库,SpringBoot2Mybatis Plus后端,redis缓存,安全框架 SpringSecurity ,Vue3.2Element Plus实现后台管理。基于JWT技术实现前后端分离。项目开发同时采 …...

如何在Spring Boot中使用注解动态切换实现

还在用冗长的if-else或switch语句管理多个服务实现? 相信不少Spring Boot开发者都遇到过这样的场景:需要根据不同条件动态选择不同的服务实现。 如果告诉你可以完全摆脱条件判断,让Spring自动选择合适的实现——只需要一个注解,你是否感兴趣? 本文将详细介绍这种优雅的…...

短视频时长预估算法调研

weighted LR o d d s T p 1 − p ( 1 − p ) o d d s T p ( T p o d d s ∗ p ) o d d s p o d d s T o d d s odds \frac{Tp}{1-p} \newline (1-p)odds Tp \newline (Tp odds * p) odds \newline p \frac{odds}{T odds} \newline odds1−pTp​(1−p)oddsTp(Tpodds…...

基于Java的离散数学题库系统设计与实现:附完整源码与论文

JAVASQL离散数学题库管理系统 一、系统概述 本系统采用Java Swing开发桌面应用,结合SQL Server数据库实现离散数学题库的高效管理。系统支持题型分类(选择题、填空题、判断题等)、难度分级、知识点关联,并提供智能组卷、在线测试…...

板凳-------Mysql cookbook学习 (十--2)

5.12 模式匹配中的大小写问题 mysql> use cookbook Database changed mysql> select a like A, a regexp A; ------------------------------ | a like A | a regexp A | ------------------------------ | 1 | 1 | --------------------------…...

设计模式域——软件设计模式全集

摘要 软件设计模式是软件工程领域中经过验证的、可复用的解决方案,旨在解决常见的软件设计问题。它们是软件开发经验的总结,能够帮助开发人员在设计阶段快速找到合适的解决方案,提高代码的可维护性、可扩展性和可复用性。设计模式主要分为三…...

FTPS、HTTPS、SMTPS以及WebSockets over TLS的概念及其应用场景

一、什么是FTPS? FTPS,英文全称File Transfer Protocol with support for Transport Layer Security (SSL/TLS),安全文件传输协议,是一种对常用的文件传输协议(FTP)添加传输层安全(TLS)和安全套接层(SSL)加密协议支持的扩展协议。…...

RK3568项目(七)--uboot系统之外设与PMIC详解

目录 一、引言 二、按键 ------>2.1、按键种类 ------------>2.1.1、RESET ------------>2.1.2、UPDATE ------------>2.1.3、PWRON 部分 ------------>2.1.4、RK809 PMIC ------------>2.1.5、ADC按键 ------------>2.1.6、ADC按键驱动 ------…...

Three.js进阶之粒子系统(一)

一些特定模糊现象,经常使用粒子系统模拟,如火焰、爆炸等。Three.js提供了多种粒子系统,下面介绍粒子系统 一、Sprite粒子系统 使用场景:下雨、下雪、烟花 ce使用代码: var materialnew THRESS.SpriteMaterial();//…...

【仿生机器人】刀剑神域——爱丽丝苏醒计划,需求文档

仿生机器人"爱丽丝"系统架构设计需求文档 一、硬件基础 已完成头部和颈部硬件搭建 25个舵机驱动表情系统 颈部旋转功能 眼部摄像头(视觉输入) 麦克风阵列(听觉输入) 颈部发声装置(语音输出&#xff09…...

小白的进阶之路系列之十四----人工智能从初步到精通pytorch综合运用的讲解第七部分

通过示例学习PyTorch 本教程通过独立的示例介绍PyTorch的基本概念。 PyTorch的核心提供了两个主要特性: 一个n维张量,类似于numpy,但可以在gpu上运行 用于构建和训练神经网络的自动微分 我们将使用一个三阶多项式来拟合问题 y = s i n ( x ) y=sin(x) y=sin(x),作为我们的…...