当前位置: 首页 > news >正文

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意:

给定长度为n的数列{a}_{i=1}^{n},要求每个数都在[-m,m]的范围,且任意长度大于等于2的区间和都大于等于0,问方案数。1\leq n,m\leq 5\times 10_{}^{3}

思路:

首先要看出是dp题,dp[i][x]用来表示遍历到第i位且后缀和最小为x的可行方案数(此时的后缀可以只有最后一位)。很显然j的值在区间[-m,m]。下面考虑dp如何转换:

        1.对于x\epsilon [0,m]。 先讨论dp[i][0]dp[i][0]可由dp[i-1][j],j< 0加一位值为 -j 转换而来;也可由dp[i-1][j],j>=0加一位值为0 转换而来。就有dp[i][0]=\sum_{j=-m}^{m} dp[i-1][j]。再讨论dp[i][1],可由dp[i-1][j],j<0,1-j\leq m,加一位值为 1-j 转换而来;也可由 dp[i-1][j],j>=0加一位值为1转换而来。就有dp[i][1]=\sum_{j=1-m}^{m} dp[i-1][j]。依次讨论可以得出dp[i][x]可以由dp[i-1][j],j< 0,x-j<=m,末位加值为x-j转换而来;也可由dp[i-1][j],j>=0,末位加x转换而来。综上所诉:dp[i][x]=\sum_{j=x-m}^{m} dp[i-1][j]

        2.对于x\epsilon [-m,0)。可以去验证,只有dp[i-1][j],j>=-x,末位加值为x才能转换成dp[i][x]。所以dp[i][x]=\sum_{j=-x}^{m}dp[i-1][j]

为了方便计算我们把[-m,m]这个区间平移映射到[0,2m]区间上。按照上述思想去找新的dp转换式就有:

dp[i][x]=\sum_{j=x-m}^{2m}dp[i-1][j],x\varepsilon [m,2m]

dp[i][x]=\sum_{j=2m-x}^{2m}dp[i-1][j],x\epsilon [0,m)

由于都是求和到2m,所以可以考虑后缀和优化。

代码:

//#define _CRT_SECURE_NO_WARNINGS 
//#include<iostream>
//#include<algorithm>
//#include<cstdio>
//#include<map>
//#include<string.h>
//#include<string>
//#include<vector>
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353;
const int N = 5005;
ll dp[N][N*2];//dp[i][j]表示遍历到i位,后缀和最小为j且合法的数量。(这里后缀和包含了只含有最后一位的情况)
ll sum[N * 2];//后缀数组
int main()
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int n, m;cin >> n >> m;ll ans = 0;//初始化for (int i = 0; i <= m*2; i++){dp[1][i] = 1;}for (int i = 2; i <= n; i++){//处理后缀和for (int j = m * 2; j >= 0; j--)sum[j] = (sum[j + 1] + dp[i - 1][j]) % mod;//[0,m)的情况for (int j = 0; j < m; j++){dp[i][j] = sum[2 * m - j];}//[m,2m]的情况for (int j = m; j <= 2 * m; j++){dp[i][j] = sum[j - m];}}//统计for (int i = 0; i <= m * 2; i++){ans = (ans + dp[n][i]) % mod;}cout << ans << endl;return 0;
}

相关文章:

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意&#xff1a; 给定长度为n的数列,要求每个数都在的范围&#xff0c;且任意长度大于等于2的区间和都大于等于0&#xff0c;问方案数。。 思路&#xff1a; 首先要看出是dp题&#xff0c;用来表示遍历到第i位且后缀和最小为x的可行方案数&#xff08;此时的后缀可以只有最…...

【141. 环形链表】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#x…...

ORB特征笔记

简介 ORB Oriented FAST Rotated BRIEF 前面的Oriented FAST说明的是它的关键点的选取是一种改良过的FAST&#xff0c;在FAST的基础上加了方向信息&#xff1b;后面的Rotated BRIEF是指特征描述符使用BRIEF描述子&#xff08;Binary Robust Independent Elementary Featur…...

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…...

【ArcGIS Pro二次开发】(54):三调名称转用地用海名称

三调地类和用地用海地类之间有点相似但并不一致。 在做规划时&#xff0c;拿到的三调&#xff0c;都需要将三调地类转换为用地用海地类&#xff0c;然后才能做后续的工作。 一般情况下&#xff0c;三调转用地用海存在【一对一&#xff0c;多对一和一对多】3种情况。 前2种情况…...

3D Tiles官方示例资源下载链接

本文列出Cesium官方提供的 3D Tiles 1.0和1.1规范的9个示例切块集&#xff08;tileset&#xff09;。 有关如何使用本地服务器托管这些示例的详细信息&#xff0c;请参阅 INSTRUCTIONS.md。 推荐&#xff1a;用 NSDT设计器 快速搭建可编程3D场景。 1、Metadata Granularities …...

【Java】分支结构习题

【Java】分支结构 文章目录 【Java】分支结构题1 &#xff1a;数字9 出现的次数题2 &#xff1a;计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值。题3 &#xff1a;猜数字题4 &#xff1a;牛客BC110 X图案题5 &#xff1a;输出一个整数的每一位题6 &#xff1a; 模拟三次密码输…...

删除主表 子表外键没有索引的性能优化

整个表147M&#xff0c;执行时一个CPU耗尽&#xff0c; buffer gets 超过1个G&#xff0c; 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉&#xff1f;我看了一下&#xff0c;也就不到100000条数据&#xff0c;表上有外键&#xff0c;等了5分钟hang在那里&…...

面向切面编程AOP

面向切面编程简介 IoC使软件组件松耦合。AOP让你能够捕捉系统中经常使用的功能&#xff0c;把它转化成组件。 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程&#xff0c;面向方面编程。&#xff08;AOP是一种编程技术&#xff09; AOP是对…...

大学生活题解

样例输入&#xff1a; 3 .xA ... Bx.样例输出&#xff1a; 6思路分析&#xff1a; 这道题只需要在正常的广搜模板上多维护一个— —方向&#xff0c;如果当前改变方向&#xff0c;就坐标不变&#xff0c;方向变&#xff0c;步数加一&#xff1b;否则坐标变&#xff0c;方向不…...

flask的配置项

flask的配置项 为了使 Flask 应用程序正常运行&#xff0c;有多种配置选项需要考虑。下面是一些基本的 Flask 配置选项&#xff1a; DEBUG: 这个配置项决定 Flask 是否应该在调试模式下运行。如果这个值被设为 True&#xff0c;Flask 将会提供更详细的错误信息&#xff0c;并…...

暑假刷题第16天--7/28

143. 最大异或对 - AcWing题库&#xff08;字典树&#xff09; #include<iostream> using namespace std; const int N100005; int a[N]; int nex[10000007][2],cnt; void insert(int x){int p0;for(int i30;i>0;i--){int ux>>i&1;if(!nex[p][u])nex[p][u]…...

vue vite ts electron ipc arm64

初始化 npm init vue # 全选 yes npm i # 进入项目目录后使用 npm install electron electron-builder -D npm install commander -D # 额外组件增加文件 新建 plugins 文件夹 src/background.ts 属于主进程 ipcMain.on、ipcMain.handle 都用于主进程监听 ipc&#xff0c;…...

数据分析-关于指标和指标体系

一、电商指标体系 二、指标体系的作用 三、统计学中基本的分析手段...

Vue+ElementUI操作确认框及提示框的使用

在进行数据增删改查操作中为保证用户的使用体验&#xff0c;通常需要显示相关操作的确认信息以及操作结果的通知信息。文章以数据的下载和删除提示为例进行了简要实现&#xff0c;点击下载以及删除按钮&#xff0c;会出现对相关信息的提示&#xff0c;操作结果如下所示。 点击…...

宋浩线性代数笔记(二)矩阵及其性质

更新线性代数第二章——矩阵&#xff0c;本章为线代学科最核心的一章&#xff0c;知识点多而杂碎&#xff0c;务必仔细学习。 重难点在于&#xff1a; 1.矩阵的乘法运算 2.逆矩阵、伴随矩阵的求解 3.矩阵的初等变换 4.矩阵的秩 &#xff08;去年写的字&#xff0c;属实有点ugl…...

Linux之Shell 编程详解(二)

第 9 章 正则表达式入门 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文 本编辑器里&#xff0c;正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中&#xff0c;grep&#xff0c; sed&#xff0c;awk 等文本处理工具都支持…...

TCP网络通信编程之字节流

目录 【TCP字节流编程】 // 网络编程中&#xff0c;一定是server端先运行 【案例1】 【思路分析】 【客户端代码】 【服务端代码】 【结果展示】 【案例2】 【题目描述】 【注意事项】 【服务端代码】 【客户端代码】 【代码结果】 【TCP字节流编程】 // 网络编程中&a…...

【暑期每日一练】 day8

目录 选择题 &#xff08;1&#xff09; 解析&#xff1a; &#xff08;2&#xff09; 解析&#xff1a; &#xff08;3&#xff09; 解析&#xff1a; &#xff08;4&#xff09; 解析&#xff1a; &#xff08;5&#xff09; 解析&#xff1a; 编程题 题一 描述…...

maven的基本学习

maven https://www.bilibili.com/video/BV14j411S76G?p1&vd_source5c648979fd92a0f7ba8de0cde4f02a6e 1.简介 1.1介绍 Maven翻译为"专家"、“内行”&#xff0c;是Apache下的一个纯Java开发的开源项目。基于项目对象模型(缩写:POM)概念&#xff0c;Maven利用一…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

算法:模拟

1.替换所有的问号 1576. 替换所有的问号 - 力扣&#xff08;LeetCode&#xff09; ​遍历字符串​&#xff1a;通过外层循环逐一检查每个字符。​遇到 ? 时处理​&#xff1a; 内层循环遍历小写字母&#xff08;a 到 z&#xff09;。对每个字母检查是否满足&#xff1a; ​与…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...