当前位置: 首页 > news >正文

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意:

给定长度为n的数列{a}_{i=1}^{n},要求每个数都在[-m,m]的范围,且任意长度大于等于2的区间和都大于等于0,问方案数。1\leq n,m\leq 5\times 10_{}^{3}

思路:

首先要看出是dp题,dp[i][x]用来表示遍历到第i位且后缀和最小为x的可行方案数(此时的后缀可以只有最后一位)。很显然j的值在区间[-m,m]。下面考虑dp如何转换:

        1.对于x\epsilon [0,m]。 先讨论dp[i][0]dp[i][0]可由dp[i-1][j],j< 0加一位值为 -j 转换而来;也可由dp[i-1][j],j>=0加一位值为0 转换而来。就有dp[i][0]=\sum_{j=-m}^{m} dp[i-1][j]。再讨论dp[i][1],可由dp[i-1][j],j<0,1-j\leq m,加一位值为 1-j 转换而来;也可由 dp[i-1][j],j>=0加一位值为1转换而来。就有dp[i][1]=\sum_{j=1-m}^{m} dp[i-1][j]。依次讨论可以得出dp[i][x]可以由dp[i-1][j],j< 0,x-j<=m,末位加值为x-j转换而来;也可由dp[i-1][j],j>=0,末位加x转换而来。综上所诉:dp[i][x]=\sum_{j=x-m}^{m} dp[i-1][j]

        2.对于x\epsilon [-m,0)。可以去验证,只有dp[i-1][j],j>=-x,末位加值为x才能转换成dp[i][x]。所以dp[i][x]=\sum_{j=-x}^{m}dp[i-1][j]

为了方便计算我们把[-m,m]这个区间平移映射到[0,2m]区间上。按照上述思想去找新的dp转换式就有:

dp[i][x]=\sum_{j=x-m}^{2m}dp[i-1][j],x\varepsilon [m,2m]

dp[i][x]=\sum_{j=2m-x}^{2m}dp[i-1][j],x\epsilon [0,m)

由于都是求和到2m,所以可以考虑后缀和优化。

代码:

//#define _CRT_SECURE_NO_WARNINGS 
//#include<iostream>
//#include<algorithm>
//#include<cstdio>
//#include<map>
//#include<string.h>
//#include<string>
//#include<vector>
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353;
const int N = 5005;
ll dp[N][N*2];//dp[i][j]表示遍历到i位,后缀和最小为j且合法的数量。(这里后缀和包含了只含有最后一位的情况)
ll sum[N * 2];//后缀数组
int main()
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int n, m;cin >> n >> m;ll ans = 0;//初始化for (int i = 0; i <= m*2; i++){dp[1][i] = 1;}for (int i = 2; i <= n; i++){//处理后缀和for (int j = m * 2; j >= 0; j--)sum[j] = (sum[j + 1] + dp[i - 1][j]) % mod;//[0,m)的情况for (int j = 0; j < m; j++){dp[i][j] = sum[2 * m - j];}//[m,2m]的情况for (int j = m; j <= 2 * m; j++){dp[i][j] = sum[j - m];}}//统计for (int i = 0; i <= m * 2; i++){ans = (ans + dp[n][i]) % mod;}cout << ans << endl;return 0;
}

相关文章:

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意&#xff1a; 给定长度为n的数列,要求每个数都在的范围&#xff0c;且任意长度大于等于2的区间和都大于等于0&#xff0c;问方案数。。 思路&#xff1a; 首先要看出是dp题&#xff0c;用来表示遍历到第i位且后缀和最小为x的可行方案数&#xff08;此时的后缀可以只有最…...

【141. 环形链表】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#x…...

ORB特征笔记

简介 ORB Oriented FAST Rotated BRIEF 前面的Oriented FAST说明的是它的关键点的选取是一种改良过的FAST&#xff0c;在FAST的基础上加了方向信息&#xff1b;后面的Rotated BRIEF是指特征描述符使用BRIEF描述子&#xff08;Binary Robust Independent Elementary Featur…...

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…...

【ArcGIS Pro二次开发】(54):三调名称转用地用海名称

三调地类和用地用海地类之间有点相似但并不一致。 在做规划时&#xff0c;拿到的三调&#xff0c;都需要将三调地类转换为用地用海地类&#xff0c;然后才能做后续的工作。 一般情况下&#xff0c;三调转用地用海存在【一对一&#xff0c;多对一和一对多】3种情况。 前2种情况…...

3D Tiles官方示例资源下载链接

本文列出Cesium官方提供的 3D Tiles 1.0和1.1规范的9个示例切块集&#xff08;tileset&#xff09;。 有关如何使用本地服务器托管这些示例的详细信息&#xff0c;请参阅 INSTRUCTIONS.md。 推荐&#xff1a;用 NSDT设计器 快速搭建可编程3D场景。 1、Metadata Granularities …...

【Java】分支结构习题

【Java】分支结构 文章目录 【Java】分支结构题1 &#xff1a;数字9 出现的次数题2 &#xff1a;计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值。题3 &#xff1a;猜数字题4 &#xff1a;牛客BC110 X图案题5 &#xff1a;输出一个整数的每一位题6 &#xff1a; 模拟三次密码输…...

删除主表 子表外键没有索引的性能优化

整个表147M&#xff0c;执行时一个CPU耗尽&#xff0c; buffer gets 超过1个G&#xff0c; 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉&#xff1f;我看了一下&#xff0c;也就不到100000条数据&#xff0c;表上有外键&#xff0c;等了5分钟hang在那里&…...

面向切面编程AOP

面向切面编程简介 IoC使软件组件松耦合。AOP让你能够捕捉系统中经常使用的功能&#xff0c;把它转化成组件。 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程&#xff0c;面向方面编程。&#xff08;AOP是一种编程技术&#xff09; AOP是对…...

大学生活题解

样例输入&#xff1a; 3 .xA ... Bx.样例输出&#xff1a; 6思路分析&#xff1a; 这道题只需要在正常的广搜模板上多维护一个— —方向&#xff0c;如果当前改变方向&#xff0c;就坐标不变&#xff0c;方向变&#xff0c;步数加一&#xff1b;否则坐标变&#xff0c;方向不…...

flask的配置项

flask的配置项 为了使 Flask 应用程序正常运行&#xff0c;有多种配置选项需要考虑。下面是一些基本的 Flask 配置选项&#xff1a; DEBUG: 这个配置项决定 Flask 是否应该在调试模式下运行。如果这个值被设为 True&#xff0c;Flask 将会提供更详细的错误信息&#xff0c;并…...

暑假刷题第16天--7/28

143. 最大异或对 - AcWing题库&#xff08;字典树&#xff09; #include<iostream> using namespace std; const int N100005; int a[N]; int nex[10000007][2],cnt; void insert(int x){int p0;for(int i30;i>0;i--){int ux>>i&1;if(!nex[p][u])nex[p][u]…...

vue vite ts electron ipc arm64

初始化 npm init vue # 全选 yes npm i # 进入项目目录后使用 npm install electron electron-builder -D npm install commander -D # 额外组件增加文件 新建 plugins 文件夹 src/background.ts 属于主进程 ipcMain.on、ipcMain.handle 都用于主进程监听 ipc&#xff0c;…...

数据分析-关于指标和指标体系

一、电商指标体系 二、指标体系的作用 三、统计学中基本的分析手段...

Vue+ElementUI操作确认框及提示框的使用

在进行数据增删改查操作中为保证用户的使用体验&#xff0c;通常需要显示相关操作的确认信息以及操作结果的通知信息。文章以数据的下载和删除提示为例进行了简要实现&#xff0c;点击下载以及删除按钮&#xff0c;会出现对相关信息的提示&#xff0c;操作结果如下所示。 点击…...

宋浩线性代数笔记(二)矩阵及其性质

更新线性代数第二章——矩阵&#xff0c;本章为线代学科最核心的一章&#xff0c;知识点多而杂碎&#xff0c;务必仔细学习。 重难点在于&#xff1a; 1.矩阵的乘法运算 2.逆矩阵、伴随矩阵的求解 3.矩阵的初等变换 4.矩阵的秩 &#xff08;去年写的字&#xff0c;属实有点ugl…...

Linux之Shell 编程详解(二)

第 9 章 正则表达式入门 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文 本编辑器里&#xff0c;正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中&#xff0c;grep&#xff0c; sed&#xff0c;awk 等文本处理工具都支持…...

TCP网络通信编程之字节流

目录 【TCP字节流编程】 // 网络编程中&#xff0c;一定是server端先运行 【案例1】 【思路分析】 【客户端代码】 【服务端代码】 【结果展示】 【案例2】 【题目描述】 【注意事项】 【服务端代码】 【客户端代码】 【代码结果】 【TCP字节流编程】 // 网络编程中&a…...

【暑期每日一练】 day8

目录 选择题 &#xff08;1&#xff09; 解析&#xff1a; &#xff08;2&#xff09; 解析&#xff1a; &#xff08;3&#xff09; 解析&#xff1a; &#xff08;4&#xff09; 解析&#xff1a; &#xff08;5&#xff09; 解析&#xff1a; 编程题 题一 描述…...

maven的基本学习

maven https://www.bilibili.com/video/BV14j411S76G?p1&vd_source5c648979fd92a0f7ba8de0cde4f02a6e 1.简介 1.1介绍 Maven翻译为"专家"、“内行”&#xff0c;是Apache下的一个纯Java开发的开源项目。基于项目对象模型(缩写:POM)概念&#xff0c;Maven利用一…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...