当前位置: 首页 > news >正文

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意:

给定长度为n的数列{a}_{i=1}^{n},要求每个数都在[-m,m]的范围,且任意长度大于等于2的区间和都大于等于0,问方案数。1\leq n,m\leq 5\times 10_{}^{3}

思路:

首先要看出是dp题,dp[i][x]用来表示遍历到第i位且后缀和最小为x的可行方案数(此时的后缀可以只有最后一位)。很显然j的值在区间[-m,m]。下面考虑dp如何转换:

        1.对于x\epsilon [0,m]。 先讨论dp[i][0]dp[i][0]可由dp[i-1][j],j< 0加一位值为 -j 转换而来;也可由dp[i-1][j],j>=0加一位值为0 转换而来。就有dp[i][0]=\sum_{j=-m}^{m} dp[i-1][j]。再讨论dp[i][1],可由dp[i-1][j],j<0,1-j\leq m,加一位值为 1-j 转换而来;也可由 dp[i-1][j],j>=0加一位值为1转换而来。就有dp[i][1]=\sum_{j=1-m}^{m} dp[i-1][j]。依次讨论可以得出dp[i][x]可以由dp[i-1][j],j< 0,x-j<=m,末位加值为x-j转换而来;也可由dp[i-1][j],j>=0,末位加x转换而来。综上所诉:dp[i][x]=\sum_{j=x-m}^{m} dp[i-1][j]

        2.对于x\epsilon [-m,0)。可以去验证,只有dp[i-1][j],j>=-x,末位加值为x才能转换成dp[i][x]。所以dp[i][x]=\sum_{j=-x}^{m}dp[i-1][j]

为了方便计算我们把[-m,m]这个区间平移映射到[0,2m]区间上。按照上述思想去找新的dp转换式就有:

dp[i][x]=\sum_{j=x-m}^{2m}dp[i-1][j],x\varepsilon [m,2m]

dp[i][x]=\sum_{j=2m-x}^{2m}dp[i-1][j],x\epsilon [0,m)

由于都是求和到2m,所以可以考虑后缀和优化。

代码:

//#define _CRT_SECURE_NO_WARNINGS 
//#include<iostream>
//#include<algorithm>
//#include<cstdio>
//#include<map>
//#include<string.h>
//#include<string>
//#include<vector>
//#include<__msvc_all_public_headers.hpp>
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 998244353;
const int N = 5005;
ll dp[N][N*2];//dp[i][j]表示遍历到i位,后缀和最小为j且合法的数量。(这里后缀和包含了只含有最后一位的情况)
ll sum[N * 2];//后缀数组
int main()
{ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int n, m;cin >> n >> m;ll ans = 0;//初始化for (int i = 0; i <= m*2; i++){dp[1][i] = 1;}for (int i = 2; i <= n; i++){//处理后缀和for (int j = m * 2; j >= 0; j--)sum[j] = (sum[j + 1] + dp[i - 1][j]) % mod;//[0,m)的情况for (int j = 0; j < m; j++){dp[i][j] = sum[2 * m - j];}//[m,2m]的情况for (int j = m; j <= 2 * m; j++){dp[i][j] = sum[j - m];}}//统计for (int i = 0; i <= m * 2; i++){ans = (ans + dp[n][i]) % mod;}cout << ans << endl;return 0;
}

相关文章:

2023牛客暑期多校-J-Qu‘est-ce Que C‘est?(DP)

题意&#xff1a; 给定长度为n的数列,要求每个数都在的范围&#xff0c;且任意长度大于等于2的区间和都大于等于0&#xff0c;问方案数。。 思路&#xff1a; 首先要看出是dp题&#xff0c;用来表示遍历到第i位且后缀和最小为x的可行方案数&#xff08;此时的后缀可以只有最…...

【141. 环形链表】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#x…...

ORB特征笔记

简介 ORB Oriented FAST Rotated BRIEF 前面的Oriented FAST说明的是它的关键点的选取是一种改良过的FAST&#xff0c;在FAST的基础上加了方向信息&#xff1b;后面的Rotated BRIEF是指特征描述符使用BRIEF描述子&#xff08;Binary Robust Independent Elementary Featur…...

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…...

【ArcGIS Pro二次开发】(54):三调名称转用地用海名称

三调地类和用地用海地类之间有点相似但并不一致。 在做规划时&#xff0c;拿到的三调&#xff0c;都需要将三调地类转换为用地用海地类&#xff0c;然后才能做后续的工作。 一般情况下&#xff0c;三调转用地用海存在【一对一&#xff0c;多对一和一对多】3种情况。 前2种情况…...

3D Tiles官方示例资源下载链接

本文列出Cesium官方提供的 3D Tiles 1.0和1.1规范的9个示例切块集&#xff08;tileset&#xff09;。 有关如何使用本地服务器托管这些示例的详细信息&#xff0c;请参阅 INSTRUCTIONS.md。 推荐&#xff1a;用 NSDT设计器 快速搭建可编程3D场景。 1、Metadata Granularities …...

【Java】分支结构习题

【Java】分支结构 文章目录 【Java】分支结构题1 &#xff1a;数字9 出现的次数题2 &#xff1a;计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值。题3 &#xff1a;猜数字题4 &#xff1a;牛客BC110 X图案题5 &#xff1a;输出一个整数的每一位题6 &#xff1a; 模拟三次密码输…...

删除主表 子表外键没有索引的性能优化

整个表147M&#xff0c;执行时一个CPU耗尽&#xff0c; buffer gets 超过1个G&#xff0c; 启用并行也没有用 今天开发的同事问有个表上的数据为什么删不掉&#xff1f;我看了一下&#xff0c;也就不到100000条数据&#xff0c;表上有外键&#xff0c;等了5分钟hang在那里&…...

面向切面编程AOP

面向切面编程简介 IoC使软件组件松耦合。AOP让你能够捕捉系统中经常使用的功能&#xff0c;把它转化成组件。 AOP&#xff08;Aspect Oriented Programming&#xff09;&#xff1a;面向切面编程&#xff0c;面向方面编程。&#xff08;AOP是一种编程技术&#xff09; AOP是对…...

大学生活题解

样例输入&#xff1a; 3 .xA ... Bx.样例输出&#xff1a; 6思路分析&#xff1a; 这道题只需要在正常的广搜模板上多维护一个— —方向&#xff0c;如果当前改变方向&#xff0c;就坐标不变&#xff0c;方向变&#xff0c;步数加一&#xff1b;否则坐标变&#xff0c;方向不…...

flask的配置项

flask的配置项 为了使 Flask 应用程序正常运行&#xff0c;有多种配置选项需要考虑。下面是一些基本的 Flask 配置选项&#xff1a; DEBUG: 这个配置项决定 Flask 是否应该在调试模式下运行。如果这个值被设为 True&#xff0c;Flask 将会提供更详细的错误信息&#xff0c;并…...

暑假刷题第16天--7/28

143. 最大异或对 - AcWing题库&#xff08;字典树&#xff09; #include<iostream> using namespace std; const int N100005; int a[N]; int nex[10000007][2],cnt; void insert(int x){int p0;for(int i30;i>0;i--){int ux>>i&1;if(!nex[p][u])nex[p][u]…...

vue vite ts electron ipc arm64

初始化 npm init vue # 全选 yes npm i # 进入项目目录后使用 npm install electron electron-builder -D npm install commander -D # 额外组件增加文件 新建 plugins 文件夹 src/background.ts 属于主进程 ipcMain.on、ipcMain.handle 都用于主进程监听 ipc&#xff0c;…...

数据分析-关于指标和指标体系

一、电商指标体系 二、指标体系的作用 三、统计学中基本的分析手段...

Vue+ElementUI操作确认框及提示框的使用

在进行数据增删改查操作中为保证用户的使用体验&#xff0c;通常需要显示相关操作的确认信息以及操作结果的通知信息。文章以数据的下载和删除提示为例进行了简要实现&#xff0c;点击下载以及删除按钮&#xff0c;会出现对相关信息的提示&#xff0c;操作结果如下所示。 点击…...

宋浩线性代数笔记(二)矩阵及其性质

更新线性代数第二章——矩阵&#xff0c;本章为线代学科最核心的一章&#xff0c;知识点多而杂碎&#xff0c;务必仔细学习。 重难点在于&#xff1a; 1.矩阵的乘法运算 2.逆矩阵、伴随矩阵的求解 3.矩阵的初等变换 4.矩阵的秩 &#xff08;去年写的字&#xff0c;属实有点ugl…...

Linux之Shell 编程详解(二)

第 9 章 正则表达式入门 正则表达式使用单个字符串来描述、匹配一系列符合某个语法规则的字符串。在很多文 本编辑器里&#xff0c;正则表达式通常被用来检索、替换那些符合某个模式的文本。在 Linux 中&#xff0c;grep&#xff0c; sed&#xff0c;awk 等文本处理工具都支持…...

TCP网络通信编程之字节流

目录 【TCP字节流编程】 // 网络编程中&#xff0c;一定是server端先运行 【案例1】 【思路分析】 【客户端代码】 【服务端代码】 【结果展示】 【案例2】 【题目描述】 【注意事项】 【服务端代码】 【客户端代码】 【代码结果】 【TCP字节流编程】 // 网络编程中&a…...

【暑期每日一练】 day8

目录 选择题 &#xff08;1&#xff09; 解析&#xff1a; &#xff08;2&#xff09; 解析&#xff1a; &#xff08;3&#xff09; 解析&#xff1a; &#xff08;4&#xff09; 解析&#xff1a; &#xff08;5&#xff09; 解析&#xff1a; 编程题 题一 描述…...

maven的基本学习

maven https://www.bilibili.com/video/BV14j411S76G?p1&vd_source5c648979fd92a0f7ba8de0cde4f02a6e 1.简介 1.1介绍 Maven翻译为"专家"、“内行”&#xff0c;是Apache下的一个纯Java开发的开源项目。基于项目对象模型(缩写:POM)概念&#xff0c;Maven利用一…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...