常见网关对比
常见网关对比
目前常见的开源网关大致上按照语言分类有如下几类:
-
Nginx+lua :OpenResty、Kong、Orange、Abtesting gateway 等
-
Java :Zuul/Zuul2、Spring Cloud Gateway、Kaazing KWG、gravitee、Dromara soul 等
-
Go :Janus、fagongzi、Grpc-gateway
-
Dotnet :Ocelot
-
NodeJS :Express Gateway、Micro Gateway
按照使用数量、成熟度等来划分,主流的有 5个:
-
OpenResty
-
Kong
-
Zuul、Zuul2
-
Spring Cloud Gateway
1. OpenResty
OpenResty是一个流量网关,根据前面对流量网关的介绍就可以知道流量网关的指责。
OpenResty基于 Nginx与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库、第三方模块以及大多数的依赖项。用于方便地搭建能够处理超高并发、扩展性极高的动态 Web 应用、Web 服务和动态网关。
通过揉和众多设计良好的 Nginx 模块,OpenResty 有效地把 Nginx 服务器转变为一个强大的 Web 应用服务器,基于它开发人员可以使用 Lua 编程语言对 Nginx 核心以及现有的各种 Nginx C 模块进行脚本编程,构建出可以处理一万以上并发请求的极端高性能的 Web 应用
OpenResty 最早是顺应 OpenAPI 的潮流做的,所以 Open 取自“开放”之意,而Resty便是 REST 风格的意思。虽然后来也可以基于 ngx_openresty 实现任何形式的 web service 或者传统的 web 应用。
也就是说 Nginx 不再是一个简单的静态网页服务器,也不再是一个简单的反向代理了。第二代的 openresty 致力于通过一系列 nginx 模块,把nginx扩展为全功能的 web 应用服务器。
ngx_openresty 是用户驱动的项目,后来也有不少国内用户的参与,从 openresty.org 的点击量分布上看,国内和国外的点击量基本持平。
ngx_openresty 目前有两大应用目标:
- 通用目的的 web 应用服务器。在这个目标下,现有的 web 应用技术都可以算是和 OpenResty 或多或少有些类似,比如 Nodejs, PHP 等等。ngx_openresty 的性能(包括内存使用和 CPU 效率)算是最大的卖点之一。
- Nginx 的脚本扩展编程,用于构建灵活的 Web 应用网关和 Web 应用防火墙。有些类似的是 NetScaler。其优势在于 Lua
编程带来的巨大灵活性。
2. Kong
Kong基于OpenResty开发,也是流量层网关, 是一个云原生、快速、可扩展、分布式的Api 网关。继承了OpenResty的高性能、易扩展性等特点。Kong通过简单的增加机器节点,可以很容易的水平扩展。同时功能插件化,可通过插件来扩展其能力。而且在任何基础架构上都可以运行。具有以下特性:
-
提供了多样化的认证层来保护Api。
-
可对出入流量进行管制。
-
提供了可视化的流量检查、监视分析Api。
-
能够及时的转换请求和相应。
-
提供log解决方案
-
可通过api调用Serverless 函数。
Kong解决了什么问题
当我们决定对应用进行微服务改造时,应用客户端如何与微服务交互的问题也随之而来,毕竟服务数量的增加会直接导致部署授权、负载均衡、通信管理、分析和改变的难度增加。
面对以上问题,API GATEWAY是一个不错的解决方案,其所提供的访问限制、安全、流量控制、分析监控、日志、请求转发、合成和协议转换功能,可以解放开发者去把精力集中在具体逻辑的代码,而不是把时间花费在考虑如何解决应用和其他微服务链接的问题上。
可以看到Kong解决的问题。专注于全局的Api管理策略,全局流量监控、日志记录、全局限流、黑白名单控制、接入请求到业务系统的负载均衡等。
Kong的优点以及性能
在众多 API GATEWAY 框架中,Mashape 开源的高性能高可用API网关和API服务管理层——KONG(基于 NGINX+Lua)特点尤为突出,它可以通过插件扩展已有功能,这些插件(使用 lua 编写)在API请求响应循环的生命周期中被执行。于此同时,KONG本身提供包括 HTTP 基本认证、密钥认证、CORS、TCP、UDP、文件日志、API请求限流、请求转发及 NGINX 监控等基本功能。目前,Kong 在 Mashape 管理了超过 15,000 个 API,为 200,000 开发者提供了每月数十亿的请求支持。
Kong架构
Kong提供一些列的服务,这就不得不谈谈内部的架构:
首先最底层是基于Nginx, Nginx是高性能的基础层, 一个良好的负载均衡、反向代理器,然后在此基础上增加Lua脚本库,形成了OpenResty,拦截请求, 响应生命周期,可以通过Lua编写脚本,所以插件比较丰富。
关于Kong的一些插件库以及如何配置,可以参考简书:开源API网关系统(Kong教程)入门到精通:
https://www.jianshu.com/p/a68e45bcadb6
3. Zuul1.0
Zuul是所有从设备和web站点到Netflix流媒体应用程序后端请求的前门。作为一个边缘服务应用程序,Zuul被构建来支持动态路由、监视、弹性和安全性。它还可以根据需要将请求路由到多个Amazon自动伸缩组。
Zuul使用了一系列不同类型的过滤器,使我们能够快速灵活地将功能应用到服务中。
过滤器
过滤器是Zuul的核心功能。它们负责应用程序的业务逻辑,可以执行各种任务。
-
Type :通常定义过滤器应用在哪个阶段
-
Async :定义过滤器是同步还是异步
-
Execution Order :执行顺序
-
Criteria :过滤器执行的条件
-
Action :如果条件满足,过滤器执行的动作
Zuul提供了一个动态读取、编译和运行这些过滤器的框架。过滤器之间不直接通信,而是通过每个请求特有的RequestContext共享状态。
下面是Zuul的一些过滤器:
Incoming
Incoming过滤器在请求被代理到Origin之前执行。这通常是执行大部分业务逻辑的地方。例如:认证、动态路由、速率限制、DDoS保护、指标。
Endpoint
Endpoint过滤器负责基于incoming过滤器的执行来处理请求。Zuul有一个内置的过滤器(ProxyEndpoint),用于将请求代理到后端服务器,因此这些过滤器的典型用途是用于静态端点。例如:健康检查响应,静态错误响应,404响应。
Outgoing
Outgoing过滤器在从后端接收到响应以后执行处理操作。通常情况下,它们更多地用于形成响应和添加指标,而不是用于任何繁重的工作。例如:存储统计信息、添加/剥离标准标题、向实时流发送事件、gziping响应。
过滤器类型
下面是与一个请求典型的生命周期对应的标准的过滤器类型:
- PRE :路由到Origin之前执行
- ROUTING :路由到Origin期间执行
- POST :请求被路由到Origin之后执行
- ERROR :发生错误的时候执行
这些过滤器帮助我们执行以下功能:
-
身份验证和安全性 :识别每个资源的身份验证需求,并拒绝不满足它们的请求
-
监控 :在边缘跟踪有意义的数据和统计数据,以便给我们一个准确的生产视图
-
动态路由 :动态路由请求到不同的后端集群
-
压力测试 :逐渐增加集群的流量,以评估性能
-
限流 :为每种请求类型分配容量,并丢弃超过限制的请求
-
静态响应处理 :直接在边缘构建一些响应,而不是将它们转发到内部集群
Zuul 1.0 请求生命周期
Netflix宣布了通用API网关Zuul的架构转型。Zuul原本采用同步阻塞架构,转型后叫作Zuul2,采用异步非阻塞架构。Zuul2和Zuul1在架构方面的主要区别在于,Zuul2运行在异步非阻塞的框架上,比如Netty。Zuul1依赖多线程来支持吞吐量的增长,而Zuul 2使用的Netty框架依赖事件循环和回调函数。
4. Zuul2.0
Zuul 2.0 架构图
上图是Zuul2的架构,和Zuul1没有本质区别,两点变化:
- 前端用Netty Server代替Servlet,目的是支持前端异步。后端用Netty Client代替Http
Client,目的是支持后端异步。 - 过滤器换了一下名字,用Inbound Filters代替Pre-routing Filters,用Endpoint
Filter代替Routing Filter,用Outbound Filters代替Post-routing Filters。
Inbound Filters :路由到 Origin 之前执行,可以用于身份验证、路由和装饰请求
Endpoint Filters :可用于返回静态响应,否则内置的ProxyEndpoint过滤器将请求路由到Origin
Outbound Filters :从Origin那里获取响应后执行,可以用于度量、装饰用户的响应或添加自定义header
有两种类型的过滤器:sync 和 async。因为Zuul是运行在一个事件循环之上的,因此从来不要在过滤中阻塞。如果你非要阻塞,可以在一个异步过滤器中这样做,并且在一个单独的线程池上运行,否则可以使用同步过滤器。
上文提到过Zuul2开始采用了异步模型
优势 是异步非阻塞模式启动的线程很少,基本上一个CPU core上只需启一个事件环处理线程,它使用的线程资源就很少,上下文切换(Context Switch)开销也少。非阻塞模式可以接受的连接数大大增加,可以简单理解为请求来了只需要进队列,这个队列的容量可以设得很大,只要不超时,队列中的请求都会被依次处理。
不足 ,异步模式让编程模型变得复杂。一方面Zuul2本身的代码要比Zuul1复杂很多,Zuul1的代码比较容易看懂,Zuul2的代码看起来就比较费劲。另一方面异步模型没有一个明确清晰的请求->处理->响应执行流程(call flow),它的流程是通过事件触发的,请求处理的流程随时可能被切换断开,内部实现要通过一些关联id机制才能把整个执行流再串联起来,这就给开发调试运维引入了很多复杂性,比如你在IDE里头调试异步请求流就非常困难。另外ThreadLocal机制在这种异步模式下就不能简单工作,因为只有一个事件环线程,不是每个请求一个线程,也就没有线程局部的概念,所以对于CAT这种依赖于ThreadLocal才能工作的监控工具,调用链埋点就不好搞(实际可以工作但需要进行特殊处理)。
总体上,异步非阻塞模式比较适用于IO密集型(IO bound)场景,这种场景下系统大部分时间在处理IO,CPU计算比较轻,少量事件环线程就能处理。
Zuul 与 Zuul 2 性能对比
Netflix给出了一个比较模糊的数据,大致Zuul2的性能比Zuul1好20%左右 ,这里的性能主要指每节点每秒处理的请求数。为什么说模糊呢?因为这个数据受实际测试环境,流量场景模式等众多因素影响,你很难复现这个测试数据。即便这个20%的性能提升是确实的,其实这个性能提升也并不大,和异步引入的复杂性相比,这20%的提升是否值得是个问题。Netflix本身在其博文22和ppt11中也是有点含糊其词,甚至自身都有一些疑问的。
5. Spring Cloud Gateway
SpringCloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。
SpringCloud Gateway 作为 Spring Cloud 生态系统中的网关,目标是替代 Zuul,在Spring Cloud 2.0以上版本中,没有对新版本的Zuul 2.0以上最新高性能版本进行集成,仍然还是使用的Zuul 2.0之前的非Reactor模式的老版本。而为了提升网关的性能,SpringCloud Gateway是基于WebFlux框架实现的,而WebFlux框架底层则使用了高性能的Reactor模式通信框架Netty。
Spring Cloud Gateway 的目标,不仅提供统一的路由方式,并且基于 Filter 链的方式提供了网关基本的功能,例如:安全,监控/指标,和限流。
Spring Cloud Gateway 底层使用了高性能的通信框架Netty 。
SpringCloud Gateway 特征
SpringCloud官方,对SpringCloud Gateway 特征介绍如下:
(1)基于 Spring Framework 5,Project Reactor 和 Spring Boot 2.0
(2)集成 Hystrix 断路器
(3)集成 Spring Cloud DiscoveryClient
(4)Predicates 和 Filters 作用于特定路由,易于编写的 Predicates 和 Filters
(5)具备一些网关的高级功能:动态路由、限流、路径重写
从以上的特征来说,和Zuul的特征差别不大。SpringCloud Gateway和Zuul主要的区别,还是在底层的通信框架上。
简单说明一下上文中的三个术语:
Filter (过滤器)
和Zuul的过滤器在概念上类似,可以使用它拦截和修改请求,并且对上游的响应,进行二次处理。过滤器为org.springframework.cloud.gateway.filter.GatewayFilter类的实例。
Route (路由)
网关配置的基本组成模块,和Zuul的路由配置模块类似。一个Route模块 由一个 ID,一个目标 URI,一组断言和一组过滤器定义。如果断言为真,则路由匹配,目标URI会被访问。
Predicate (断言):
这是一个 Java 8 的 Predicate,可以使用它来匹配来自 HTTP 请求的任何内容,例如 headers 或参数。断言的 输入类型是一个 ServerWebExchange。
几种网关的对比
相关文章:

常见网关对比
常见网关对比 目前常见的开源网关大致上按照语言分类有如下几类: Nginxlua :OpenResty、Kong、Orange、Abtesting gateway 等 Java :Zuul/Zuul2、Spring Cloud Gateway、Kaazing KWG、gravitee、Dromara soul 等 Go :Janus、fa…...
机器学习动量优化算法笔记
动量优化算法(Momentum Optimization)是一种常用于训练神经网络的优化算法。它通过模拟物体在惯性作用下的运动来加速梯度下降过程,从而加快神经网络的收敛速度并提高训练效率。 在梯度下降算法中,每次更新权重时都是根据当前批次…...
asp.net与asp.net优缺点及示例
Asp.net Mvc架构模式是一种低耦合、可测试的web应用程序框架,它是基于CLR和成熟的MVC架构构建的。ASP .NET MVC不支持 ViewState和服务器控件。 Asp.net优点: 1.架构降低了程序间的耦合性,M VC,分层,目标明确 2.性能不支持viewsta…...
php 年月日 分组分页
//年月日 //分组 分页$type $this->request->type;$dateType "%Y-%m";//月$dateType1 "CONCAT(tmp.date,-01 00:00:00)";$dateType2 "CONCAT(LAST_DAY(CONCAT(tmp.date, -15)), 23:59:59)";if ($type day) {//日$dateType "%Y-…...
flutter开发实战-请求dio设置Cookie
flutter开发实战-请求dio设置Cookie 在最近开发中碰到了需要websocket长链接收到响应的auth,在之后的请求中需要将其设置为cookie中。 如Cookie:authDHSfQQSAXf89xZqJTLdEDVI2hwzc7p2lUmSNNdUSlgW2MyfQINpYr7jUbkX/; 设置cookie用到了dio_cookie_manager组件 一、…...

C语言第十一课--------操作符的使用与分类-------基本操作
作者前言 作者介绍: 作者id:老秦包你会, 简单介绍: 喜欢学习C语言和python等编程语言,是一位爱分享的博主,有兴趣的小可爱可以来互讨 个人主页::小小页面 gitee页面:秦大大 一个爱分享的小博主 欢迎小可爱们…...

2,继承、内联函数、虚继承、友元、构造析构函数、初始化列表
继承 2.1结构体成员权限2.1.1访问权限2.1.2类与结构体 2.2类的成员函数2.2.1类内规则2.2.2类成员内联函数inline 2.3类的继承2.3.1类的继承与成员函数2.3.2类的多继承2.3.2.1类的多继承:菱形问题提出 2.3.3类的虚继承(关键字virtual) 2.4友元…...

Mkdocs中利用Js实现大小圈鼠标拖动样式
在docs/javascripts/extra.js下复制粘贴: var CURSOR;Math.lerp (a, b, n) > (1 - n) * a n * b;const getStyle (el, attr) > {try {return window.getComputedStyle? window.getComputedStyle(el)[attr]: el.currentStyle[attr];} catch (e) {}return …...

pytorch(6)——神经网络基本骨架nn.module的使用
1 神经网络框架 1.1 Module类的使用 NN (Neural network): 神经网络 Containers: 容器 Convolution Layers: 卷积层 Pooling layers: 池化层 Padding Layers: 填充层 Non-linear Activations (weighted sum, nonlinearity): 非线性激活 Non-linear Activations (other): 非线…...

论文精读之BERT
目录 1.摘要(Abstract) 2.引言(Introduction): 3.结论(Conlusion): 4.BERT模型算法: 5.总结 1.摘要(Abstract) 与别的文章的区别是什么:BERT是用来设计去…...

实战:Docker+Jenkins+Gitee构建CICD流水线
文章目录 前言Jenkins部署创建Jenkins docker-compose配置maven源启动Jenkins容器安装插件Gitee ssh公匙配置与测试项目提交 Jenkins创建流水线写在最后 前言 持续集成和持续交付一直是当下流行的开发运维方式,CICD省去了大量的运维时间,也能够提高开发…...

7.25 Qt
制作一个登陆界面 login.pro文件 QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated (the exact warnings # depend on …...
P1420 最长连号
题目描述 输入长度为 n n n 的一个正整数序列,要求输出序列中最长连号的长度。 连号指在序列中,从小到大的连续自然数。 输入格式 第一行,一个整数 n n n。 第二行, n n n 个整数 a i a_i ai,之间用空格隔开…...
UVA-1354 天平难题 题解答案代码 算法竞赛入门经典第二版
GitHub - jzplp/aoapc-UVA-Answer: 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 这道题需要: 1. 遍历二叉树的每种构成方式。我这里每次把当前所有结点列出,然后遍历选取两个组合构成一个新结点,原来的结点剔除,新结点加入。…...

电机故障诊断(python程序,模型为CNN结合LSTM)
代码运行环境要求:TensorFlow版本>2.4.0,python版本>3.6.0 运行效果视频:电机故障诊断(python代码)_哔哩哔哩_bilibili 1.电机常见的故障类型有以下几种: 轴承故障:轴承是电机运转时最容…...

ubuntu 20.04 rtc时间显示问题探究
1、硬件与软件 本次测试的硬件为RK3568芯片,操作系统为ubuntu 20.04。 2、RTC与系统时间 先说结果,如果RTC驱动不可用或者RTC内部存储的时间非法, 那么操作系统会存储上一次有效的时间,当再次上电时,date命令会使用存储…...

数值分析第七章节 用Python实现非线性方程与方程组的数值解法
参考书籍:数值分析 第五版 李庆杨 王能超 易大义编 第7章 非线性方程与方程组的数值解法 文章声明:如有发现错误,欢迎批评指正 文章目录 迭代法求解 x e x − 1 0 xe^x-10 xex−10牛顿法求解 x e x − 1 0 xe^x-10 xex−10简化牛顿法求解 …...

利用MATLAB制作DEM山体阴影
在地理绘图中,我们使用的DEM数据添加山体阴影使得绘制的图件显得更加的美观。 GIS中使用ArcGIS软件就可以达到这一目的,或者使用GMT,同样可以得到山体阴影的效果。 本文提供了一个MATLAB的函数,可以得到山体阴影。 clear all;c…...
ubuntu 使用 rsync 的 SSH 方式同步备份远程WEB服务器
ubuntu 20.04 自带 rsync ,对于 WEB 服务器这种更新频率不高的情况,直接使用定时同步复制远程服务器的方法,比较直接和简单! $ rsync --version rsync version 3.1.3 protocol version 31 参考: Ubuntu20.04中的rsyn…...

机器学习 | Python实现NARX模型预测控制
机器学习 | Python实现NARX模型预测控制 目录 机器学习 | Python实现NARX模型预测控制效果一览基本介绍研究内容程序设计参考资料效果一览 基本介绍 机器学习 | Python实现NARX模型预测控制 研究内容 贝叶斯黑盒模型预测控制,基于具有外源输入的非线性自回归模型的预期自由能最…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...

PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
Oracle11g安装包
Oracle 11g安装包 适用于windows系统,64位 下载路径 oracle 11g 安装包...