openpnp - ReferenceStripFeeder 改版零件
文章目录
- openpnp - ReferenceStripFeeder 改版零件
- 概述
- 笔记
- 整体效果
- 散料飞达主体
- 磁铁仓盖板
- 飞达编带中间压条
- 飞达编带两边压条
- 装配体用的8mm编带模型
- END
openpnp - ReferenceStripFeeder 改版零件
概述
官方推荐了ReferenceStripFeeder的模型smd_strip_feeders_mod_tray.zip, 是STL格式的.
因为每个人的设备对于散料飞达的安装方式(螺丝固定/磁铁吸附)和散料飞达的高度(和PCB平面平齐)都是不一样的, 所以要改一下.
另外STL不带特征, 只能是自己用SW重新画一个. 官方推荐的模型, 只是一个思路
根据自己的需要, 增加了编带定位柱, 增加了磁铁仓.
笔记
先画了一个8mm的散料飞达, 画的版本用3D打印整不出来, 先CNC一套试试.
主要是现在3D打印(e.g. JLC 3D猴)比CNC也便宜不了多少, 将CNC的材料选的档次低一些(e.g. 5052, POM), 在自己长期做的店家报价, 价格也能接受.
整体效果
散料飞达主体
磁铁仓盖板
飞达编带中间压条
飞达编带两边压条
装配体用的8mm编带模型
编带的具体尺寸, 可以去看电阻厂家给的说明书. e.g. C2907561_贴片电阻_FRC2010J102+TS_规格书_FOJAN(富捷)贴片电阻规格书.PDF
编带的厚度可以参考电阻本身的厚度.
最后可以得出一个装配用的编带模型.
END
相关文章:

openpnp - ReferenceStripFeeder 改版零件
文章目录 openpnp - ReferenceStripFeeder 改版零件概述笔记整体效果散料飞达主体磁铁仓盖板飞达编带中间压条飞达编带两边压条装配体用的8mm编带模型END openpnp - ReferenceStripFeeder 改版零件 概述 官方推荐了ReferenceStripFeeder的模型smd_strip_feeders_mod_tray.zip…...
VoxPoser:使用大语言模型(GPT-4)来对机器人操作的可组合三维值图【论文解读】
这是最近斯坦福的李飞飞团队的一篇论文:VoxPoser: Composable 3D Value Maps for Robotic Manipulation with Language Models 主要是通过大语言模型LLM和视觉语言模型VLM结合,来对机器人做各种日常操作,我们可以先来看下实际效果:大语言模型…...

RISC-V公测平台发布 · 第一个WEB Server “Hello RISC-V world!”
RISC-V公测平台Web Server地址:http://175.8.161.253:8081 一、前言 Web Server是互联网应用的基础设施,无论是用户访问网站,还是后端服务提供商和开发者构建各种应用程序,Web Server都在其中扮演着至关重要的角色。 显而易见…...
Linux 发行版 CentOS 于 Ubuntu 软件的安装、卸载、查找
CentOS于Ubuntu 内核都是Linux,是一样的。 CentOS 软件格式 .rpm sudo yum [-y] [ install | remove | search ] 软件名称 install 安装 remove 移除 search 搜索 Ubuntu 软件格式 .deb sudo apt [-y] [ install | remove | search ] 软件名称 install 安装 remove…...

cmd相关操作命令
1.根据端口号查询对应进程的PID netstat -ano | findstr 端口号 例如:netstat -ano | findstr 9080;该端口所属进程的PID为6684 2.根据PID查询对应进程 tasklist | findstr PID 例如:tasklist | findstr 6684;该PID所属进程名为…...

使用EM算法完成聚类任务
EM算法(Expectation-Maximization Algorithm)是一种基于迭代优化的聚类算法,用于在无监督的情况下将数据集分成几个不同的组或簇。EM算法是一种迭代算法,包含两个主要步骤:期望步骤(E-step)和最…...

❤️创意网页:创意视觉效果粒子循环的网页动画
✨博主:命运之光 🌸专栏:Python星辰秘典 🐳专栏:web开发(简单好用又好看) ❤️专栏:Java经典程序设计 ☀️博主的其他文章:点击进入博主的主页 前言:欢迎踏入…...
【MTI 6.S081 Lab】thread
【MTI 6.S081 Lab】thread 前言调度Uthread: switching between threads (moderate)实验任务Hints解决方案thread_switchthread_create()thread_schedule() Using threads (moderate)实验任务解决方案 Barrier (moderate)实验任务解决方案 本实验前去看《操作系统导论》第29章基…...

AWS / VPC 云流量监控
由于安全性、数据现代化、增长、灵活性和成本等原因促使更多企业迁移到云,将数据存储在本地的组织正在使用云来存储其重要数据。亚马逊网络服务(AWS)仍然是最受追捧和需求的服务之一,而亚马逊虚拟私有云(VPC࿰…...
【C++学习笔记】extern “c“以及如何查看符号表
如何查看符号表 要查看.a文件的内容,可以使用ar命令。下面是一些常见的用法: 列出.a文件中包含的所有文件: ar t <filename.a>提取.a文件中的单个文件: ar x <filename.a> <filename.o>将.a文件中的所有文件提…...

24考研数据结构-数组和特殊矩阵
目录 数据结构:数组与特殊矩阵数组数组的特点数组的用途 特殊矩阵对角矩阵上三角矩阵和下三角矩阵稀疏矩阵特殊矩阵的用途 结论 3.4 数组和特殊矩阵3.4.1数组的存储结构3.4.2普通矩阵的存储3.4.3特殊矩阵的存储1. 对称矩阵(方阵)2. 三角矩阵(方阵)3. 三对角矩阵(方阵…...
服务器后台运行程序
代码运行 要让代码在服务器后台运行,有多种方法。在 Linux 系统中,最常见的有以下几种方式: **1. 使用 & 符号:** 在命令后面添加 & 符号可以让程序在后台运行。例如: bash python myscript.py &但是…...

大数据课程D7——hadoop的YARN
文章作者邮箱:yugongshiyesina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解YARN的概念和结构; ⚪ 掌握YARN的资源调度流程; ⚪ 了解Hadoop支持的资源调度器:FIFO、Capacity、Fair; ⚪ 掌握YA…...

Rust vs Go:常用语法对比(十三)
题图来自 Go vs. Rust: The Ultimate Performance Battle 241. Yield priority to other threads Explicitly decrease the priority of the current process, so that other execution threads have a better chance to execute now. Then resume normal execution and call f…...
【【51单片机DA转换模块】】
爆改直流电机,DA转换器 main.c #include <REGX52.H> #include "Delay.h" #include "Timer0.h"sbit DAP2^1;unsigned char Counter,Compare; //计数值和比较值,用于输出PWM unsigned char i;void main() {Timer0_Init();whil…...
[SQL挖掘机] - 字符串函数 - substring
介绍: substring函数是在mysql中用于提取字符串的一种函数。它接受一个字符串作为输入,并返回从该字符串中指定位置开始的一部分子串。substring函数可以用于获取字符串中的特定字符或子串,以便进行进一步的处理或分析。 用法: 下面是substring函数的…...

第一百一十六天学习记录:C++提高:STL-string(黑马教学视频)
string基本概念 string是C风格的字符串,而string本质上是一个类 string和char区别 1、char是一个指针 2、string是一个类,类内部封装了char*,管理这个字符串,是一个char型的容器。 特点: string类内部封装了很多成员方…...

Meta-Transformer 多模态学习的统一框架
Meta-Transformer是一个用于多模态学习的新框架,用来处理和关联来自多种模态的信息,如自然语言、图像、点云、音频、视频、时间序列和表格数据,虽然各种数据之间存在固有的差距,但是Meta-Transformer利用冻结编码器从共享标记空间…...

tinkerCAD案例:24.Tinkercad 中的自定义字体
tinkerCAD案例:24.Tinkercad 中的自定义字体 原文 Tinkercad Projects Tinkercad has a fun shape in the Shape Generators section that allows you to upload your own font in SVG format and use it in your designs. I’ve used it for a variety of desi…...

list与流迭代器stream_iterator
运行代码: //list与流迭代器 #include"std_lib_facilities.h" //声明Item类 struct Item {string name;int iid;double value;Item():name(" "),iid(0),value(0.0){}Item(string ss,int ii,double vv):name(ss),iid(ii),value(vv){}friend ist…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...