机器学习深度学习——Dropout
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——权重衰减
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助
Dropout
- 重新审视过拟合
- 扰动的稳健性
- 实践中的Dropout
- 从零开始实现
- 定义模型参数
- 定义模型
- 训练和测试
- 简洁实现
- 小结
重新审视过拟合
当面对更多特征而样本不足时,线性模型常会过拟合。而如果给出更多的样本而不是特征,通常线性模型不会过拟合。但线性模型泛化的可靠性是有代价的:线性模型没有考虑到特征之间的交互作用。对每个特征,线性模型必须指定正的或负的权重,而忽略了其他的特征。这也是之前提出隐藏层的缘由。
泛化性和灵活性之间的这种基本权衡称为偏差-方差权衡。线性模型有很高的偏差:它们只能表示一小类函数。然而,这些模型的方差很低:它们在不同的随机数据样本上可以得出相似的结果。
深度神经网络就与线性模型不同,它处在偏差-方差谱的另一端,它不能查单独查看每个特征,而是学习特征之间的交互。但当我们有比特征多得多的样本时,深度神经网络也有可能会过拟合。
扰动的稳健性
我们期望的好的预测模型能在未知的数据上有很好的表现,为缩小训练与测试性能之间的差距,应该以简单模型为目标。简单性就是以较小维度的形式展现,之前验证过线性模型的单项式函数时就探讨过这一点了,此外,上一节的L2正则化-权重衰减时也看到了,参数的范数也代表了一种有用的简单性度量。
简单的另一个角度是平滑性,即函数不应该对其输入的微小变化敏感。例如,当我们对图像进行分类时,我们预计像像素添加一些随机噪声应该是基本无影响的。克里斯托弗·毕晓普证明了具有噪声的训练等价于Tikhonov正则化,不必管具体原理,咱只要知道正则化的作用就是为了权重衰减的,这证实了“要求函数光滑”和“要求函数对输入的随机噪声具有适应性”之间的联系。
因此提出了一个想法:在训练过程中,在计算后续层之前向网络的每一层注入噪声。因为当训练一个有多层的深层网络时,注入噪声只会在输入-输出映射上增强平滑性。
这个方法就称为dropout,dropout在前向传播过程中,计算每一内部层的同时注入噪声,已经成为训练神经网络的常用技术。这种方法在表面上看起来像是在训练过程中丢弃(drop out)一些神经元。标准暂退法就包括在计算下一层之前将当前层的一些结点置0。
关键在于,如何注入这些噪声。一种想法是以一种无偏向的方式注入噪声。这样在固定住其他层时,每一层的期望值都等于没有噪声时的值。
在标准暂退法正则化中,通过按保留(未丢弃)的节点的分数进行规范化来消除每一层的偏差。如下所示:
h ′ = { 0 ,概率为 p h 1 − p ,其他情况 h^{'}= \begin{cases} \begin{aligned} 0,概率为p\\ \frac{h}{1-p},其他情况 \end{aligned} \end{cases} h′=⎩ ⎨ ⎧0,概率为p1−ph,其他情况
显然,E[h’]=0*p+(1-p)*h/(1-p)=h
实践中的Dropout
对于一个带有1个隐藏层和5个隐藏单元的多层感知机:
当我们将dropout应用到隐藏层,以p的概率将隐藏单元置0时,结果可以看作一个只包含神经元子集的网络,如:
因此输出的计算不再依赖h2和h5,且它们各自的梯度在反向传播时也会消失。
我们在测试时会丢弃任何节点,不用dropout。
从零开始实现
要实现单层的dropout函数,我们从均匀分布U[0,1]中抽取样本,样本数与这层神经网络的维度一致。 然后我们保留那些对应样本大于p的节点,把剩下的丢弃。
在下面的代码中,我们实现 dropout_layer 函数, 该函数以dropout的概率丢弃张量输入X中的元素, 如上所述重新缩放剩余部分:将剩余部分除以1.0-dropout。
import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)
我们可以通过下面几个例子来测试dropout_layer函数。 我们将输入X通过暂退法操作,暂退概率分别为0、0.5和1。
X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))
运行结果:
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 2., 0., 6., 0., 0., 0., 14.],
[16., 18., 20., 0., 0., 26., 28., 0.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
定义模型参数
同样,我们使用Fashion-MNIST数据集。我们定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256
定义模型
我们可以将dropout应用于每个隐藏层的输出(在激活函数之后),并且可以为每一层分别设置dropout概率(常见的技巧是在靠近输入层的地方设置较低的暂退概率)。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5,并且dropout只在训练期间有效。
dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training=True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)
训练和测试
这类似于前面描述的多层感知机训练和测试。
num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()
运行结果:
简洁实现
对于深度学习框架的高级API,我们只需在每个全连接层之后添加一个Dropout层,将暂退概率作为唯一的参数传递给它的构造函数。在训练时,Dropout层将根据指定的暂退概率随机丢弃上一层的输出。在测试时,Dropout层仅传递数据。
import torch
from torch import nn
from d2l import torch as d2lnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256dropout1, dropout2 = 0.2, 0.5net = nn.Sequential(nn.Flatten(),nn.Linear(784, 256),nn.ReLU(),# 在第一个全连接层之后添加一个dropout层nn.Dropout(dropout1),nn.Linear(256, 256),nn.ReLU(),# 在第二个全连接层之后添加一个dropout层nn.Dropout(dropout2),nn.Linear(256, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights)num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()
运行结果:
小结
1、dropout在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
2、dropout可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
3、dropout将活性值h替换为具有期望值h的随机变量。
4、dropout仅在训练期间使用。
相关文章:

机器学习深度学习——Dropout
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——权重衰减 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮助 Drop…...

Intel和AMD 与 x86,ARM,MIPS有什么区别?
先说amd和intel amd和Intel这俩公司的渊源很深,早期时Intel先是自己搞了个x86架构,然后amd拿到了x86的授权也可以自己做x86了。接着intel向64位过渡的时候自己搞了个ia64(x64架构)但是因为和x86架构不兼容市场反应极差࿰…...

QT编写的串口助手
QT编写的串口助手 提前的知识 创建UI界面工程 找帮助文档 添加串口的宏...

C语言字符串的处理
用惯了Java C#这些语言,C语言中处理字符串还是有些不习惯的,所以这里写一下学习笔记。 C中字符串就是字符数组,是指向字符的指针,并且以空字符 \0 结尾,字符串作为函数的参数传递时一般使用指针类型,使用数…...

Docker 阿里云容器镜像服务
阿里云-容器镜像服务ACR 将本地/服务器docker image(镜像)推送到 阿里云容器镜像服务仓库 1. 在容器镜像服务ACR中创建个人实例 2. 进入个人实例 > 命名空间 创建命名空间 3. 进入个人实例 > 镜像仓库 创建镜像仓库 4. 进入镜像仓库 > 基本信…...

【雕爷学编程】MicroPython动手做(20)——掌控板之三轴加速度6
知识点:什么是掌控板? 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片,支持WiFi和蓝牙双模通信,可作为物联网节点,实现物联网应用。同时掌控板上集成了OLED…...

链路 聚合
静态链路聚合:多数内网使用 。非物理直连建议与BFD联动 动态链路聚合LACP:是公有协议、内网、二层专线接口都能使用,现网多数使用此方式链路 聚合 PAGP:思科私有协议,只支持思科设备使,现网多数不用...

DPN(Dual Path Network)网络结构详解
论文:Dual Path Networks 论文链接:https://arxiv.org/abs/1707.01629 代码:https://github.com/cypw/DPNs MXNet框架下可训练模型的DPN代码:https://github.com/miraclewkf/DPN 我们知道ResNet,ResNeXt,D…...

【转载】Gin框架优雅退出
转载自: https://juejin.cn/post/7212786062224146487 Gin是一个非常流行的Web框架,经常被用于构建高性能、易于维护的Web应用。在领域驱动设计(DDD)和微服务等方面也有广泛应用。但是,像其他应用程序一样,…...

【数字IC设计】VCS仿真DesignWare IP
DesignWare介绍 DesignWare是SoC/ASIC设计者最钟爱的设计IP库和验证IP库。它包括一个独立于工艺的、经验证的、可综合的虚拟微架构的元件集合,包括逻辑、算术、存储和专用元件系列,超过140个模块。DesignWare和 Design Compiler的结合可以极大地改进综合…...

【*1900 图论+枚举思想】CF1328 E
Problem - E - Codeforces 题意: 思路: 注意到题目的性质:满足条件的路径个数是极少的,因为每个点离路径的距离<1 先考虑一条链,那么直接就选最深那个点作为端点即可 为什么,因为我们需要遍历所有点…...

AutoSAR系列讲解(实践篇)10.5-通信管理模块
目录 一、ComM 1、内部唤醒 2、外部唤醒 二、CanSM 三、状态关联 之前讲解了BswM和EcuM,详细讲解了BswM的配置,而大部分的配置都在BswM中做了,EcuM的配置就很简单了,基本上勾一勾就ok了。下面我们 来讲解模式管理还可能用到的通信模块 一、ComM ComM就像一个通信的总…...

2023.7.30(epoll实现并发服务器)
服务器 #include <arpa/inet.h> #include <netinet/in.h> #include <netinet/ip.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/socket.h> #include <sys/types.…...

小研究 - 基于解析树的 Java Web 灰盒模糊测试(一)
由于 Java Web 应用业务场景复杂, 且对输入数据的结构有效性要求较高, 现有的测试方法和工具在测试Java Web 时存在测试用例的有效率较低的问题. 为了解决上述问题, 本文提出了基于解析树的 Java Web 应用灰盒模糊测试方法. 首先为 Java Web 应用程序的输入数据包进行语法建模创…...

SpringBoot接手JSP项目--【JSB项目实战】
SpringBoot系列文章目录 SpringBoot知识范围-学习步骤【JSB系列之000】 文章目录 SpringBoot系列文章目录[TOC](文章目录) SpringBoot技术很多很多工作之初,面临JSP的老项目我要怎么办环境及工具:项目里可能要用到的技术JSPjstl其它的必要知识 上代码WE…...

Python模块psycopg2连接postgresql
目录 1. 基础语法 2. 基础用法 3. 多条SQL 4. 事务SQL 1. 基础语法 语法 psycopg2.connect(dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。host #指定连接数据库的主机名。dbname #指定数据库名。user #指定连接数据库使用的用户名。…...

Kotlin基础(八):泛型
前言 本文主要讲解kotlin泛型,主要包括泛型基础,类型变异,类型投射,星号投射,泛型函数,泛型约束,泛型在Android中的使用。 Kotlin文章列表 Kotlin文章列表: 点击此处跳转查看 目录 1.1 泛型基…...

Java学习笔记——(10)环境变量path配置及其作用
环境变量的作用为了在 Dos 的任务目录,可以去使用 javac 和 java开发工具命令 先配置 JAVA_HOME 指向 jdk 安装的主目录(避免开发中出现问题) 编辑 path 环境变量(开发环境),增加 %JAVA_HOME%\bin 编辑 path 环境变量(运行环境…...

【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

TMS WEB Core Crack,TMS软件Delphi组件RADical Web
TMS WEB Core Crack,TMS软件Delphi组件RADical Web 使用我们的现代web应用程序框架,可以节省宝贵的时间并创造丰富的用户体验。我们所有的工具都由经验丰富的开发人员组成的专门团队提供支持。您可以信赖卓越的服务、活跃的社区和我们不断的创新。TMS Software是您的…...

PHP使用Redis实战实录4:单例模式和面向过程操作redis的语法
PHP使用Redis实战实录系列 PHP使用Redis实战实录1:宝塔环境搭建、6379端口配置、Redis服务启动失败解决方案PHP使用Redis实战实录2:Redis扩展方法和PHP连接Redis的多种方案PHP使用Redis实战实录3:数据类型比较、大小限制和性能扩展PHP使用Re…...

解决:移动端H5的<video>初始化拿不到总时长
移动端 在<video>的初始化后,会调用如下事件。 canplay"canplay" 解决方案:<video>添加自动播放属性: autoplay"autoplay" 然后这个方法里,用js在0.01秒后主动关闭播放,接着在0.…...

百度云上传身份证获取身份信息封装
1.目录结构 -script_discerm ------------包 -discerm.py --------------主要逻辑 -__init__.py -id_care---------------文件夹 存放图片 2.安装模块 pip install urllib31.23 pip install requests pip install base64 3.各文件内容 2.1 discerm.py import jsonimpo…...

vscode 上cmake 版本过低
问题: 装了vscode中的camke插件后,报错如下: CMake 3.9 or higher is required. You are running version 3.3.2。 解决办法: 卸载掉插件的cmake。 到官网下载合适的版本,设置系统变量 然后重新下载camke tools&…...

OS-08-事件驱动:C10M是如何实现的?
08-事件驱动:C10M是如何实现的? 你好,我是陶辉。 上一讲介绍了广播与组播这种一对多通讯方式,从这一讲开始,我们回到主流的一对一通讯方式。 早些年我们谈到高并发,总是会提到C10K,这是指服务…...

mysql 主从同步排查和处理 Slave_IO、Slave_SQL
目录 查看主从是否同步 详解Slave_IO、Slave_SQL 判断主从完全同步 各个 Log_File 和 Log_Pos的关系 修复命令 查看主从是否同步 show slave status; Slave_IO_Running、Slave_SQL_Running,这两个值是Yes表示正常,No是异常 使用竖排显示…...

基于解析法和遗传算法相结合的配电网多台分布式电源降损配置(Matlab实现)
目录 1 概述 2 数学模型 2.1 问题表述 2.2 DG的最佳位置和容量(解析法) 2.3 使用 GA 进行最佳功率因数确定和 DG 分配 3 仿真结果与讨论 3.1 33 节点测试配电系统的仿真 3.2 69 节点测试配电系统仿真 4 结论 1 概述 为了使系统网损达到最低值&a…...

07mysql查询语句之子查询
#1.查询和Zlotkey相同部门的员工姓名和工资 SELECT last_name,salary FROM employees WHERE department_id IN ( SELECT department_id FROM employees WHERE last_name Zlotkey ); #2.查询工资比公司平均工资高的员工的员工号࿰…...

笙默考试管理系统-MyExamTest(22)
笙默考试管理系统-MyExamTest(22) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试管理系统-MyExa…...