当前位置: 首页 > news >正文

机器学习深度学习——Dropout

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——权重衰减
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

Dropout

  • 重新审视过拟合
  • 扰动的稳健性
  • 实践中的Dropout
  • 从零开始实现
    • 定义模型参数
    • 定义模型
    • 训练和测试
    • 简洁实现
    • 小结

重新审视过拟合

当面对更多特征而样本不足时,线性模型常会过拟合。而如果给出更多的样本而不是特征,通常线性模型不会过拟合。但线性模型泛化的可靠性是有代价的:线性模型没有考虑到特征之间的交互作用。对每个特征,线性模型必须指定正的或负的权重,而忽略了其他的特征。这也是之前提出隐藏层的缘由。
泛化性和灵活性之间的这种基本权衡称为偏差-方差权衡。线性模型有很高的偏差:它们只能表示一小类函数。然而,这些模型的方差很低:它们在不同的随机数据样本上可以得出相似的结果。
深度神经网络就与线性模型不同,它处在偏差-方差谱的另一端,它不能查单独查看每个特征,而是学习特征之间的交互。但当我们有比特征多得多的样本时,深度神经网络也有可能会过拟合。

扰动的稳健性

我们期望的好的预测模型能在未知的数据上有很好的表现,为缩小训练与测试性能之间的差距,应该以简单模型为目标。简单性就是以较小维度的形式展现,之前验证过线性模型的单项式函数时就探讨过这一点了,此外,上一节的L2正则化-权重衰减时也看到了,参数的范数也代表了一种有用的简单性度量。
简单的另一个角度是平滑性,即函数不应该对其输入的微小变化敏感。例如,当我们对图像进行分类时,我们预计像像素添加一些随机噪声应该是基本无影响的。克里斯托弗·毕晓普证明了具有噪声的训练等价于Tikhonov正则化,不必管具体原理,咱只要知道正则化的作用就是为了权重衰减的,这证实了“要求函数光滑”和“要求函数对输入的随机噪声具有适应性”之间的联系。
因此提出了一个想法:在训练过程中,在计算后续层之前向网络的每一层注入噪声。因为当训练一个有多层的深层网络时,注入噪声只会在输入-输出映射上增强平滑性。
这个方法就称为dropout,dropout在前向传播过程中,计算每一内部层的同时注入噪声,已经成为训练神经网络的常用技术。这种方法在表面上看起来像是在训练过程中丢弃(drop out)一些神经元。标准暂退法就包括在计算下一层之前将当前层的一些结点置0。
关键在于,如何注入这些噪声。一种想法是以一种无偏向的方式注入噪声。这样在固定住其他层时,每一层的期望值都等于没有噪声时的值。
在标准暂退法正则化中,通过按保留(未丢弃)的节点的分数进行规范化来消除每一层的偏差。如下所示:
h ′ = { 0 ,概率为 p h 1 − p ,其他情况 h^{'}= \begin{cases} \begin{aligned} 0,概率为p\\ \frac{h}{1-p},其他情况 \end{aligned} \end{cases} h= 0,概率为p1ph,其他情况
显然,E[h]=0*p+(1-p)*h/(1-p)=h

实践中的Dropout

对于一个带有1个隐藏层和5个隐藏单元的多层感知机:
在这里插入图片描述
当我们将dropout应用到隐藏层,以p的概率将隐藏单元置0时,结果可以看作一个只包含神经元子集的网络,如:
在这里插入图片描述
因此输出的计算不再依赖h2和h5,且它们各自的梯度在反向传播时也会消失。
我们在测试时会丢弃任何节点,不用dropout。

从零开始实现

要实现单层的dropout函数,我们从均匀分布U[0,1]中抽取样本,样本数与这层神经网络的维度一致。 然后我们保留那些对应样本大于p的节点,把剩下的丢弃。
在下面的代码中,我们实现 dropout_layer 函数, 该函数以dropout的概率丢弃张量输入X中的元素, 如上所述重新缩放剩余部分:将剩余部分除以1.0-dropout。

import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1# 在本情况中,所有元素都被丢弃if dropout == 1:return torch.zeros_like(X)# 在本情况中,所有元素都被保留if dropout == 0:return Xmask = (torch.rand(X.shape) > dropout).float()return mask * X / (1.0 - dropout)

我们可以通过下面几个例子来测试dropout_layer函数。 我们将输入X通过暂退法操作,暂退概率分别为0、0.5和1。

X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))

运行结果:
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 2., 0., 6., 0., 0., 0., 14.],
[16., 18., 20., 0., 0., 26., 28., 0.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

定义模型参数

同样,我们使用Fashion-MNIST数据集。我们定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

定义模型

我们可以将dropout应用于每个隐藏层的输出(在激活函数之后),并且可以为每一层分别设置dropout概率(常见的技巧是在靠近输入层的地方设置较低的暂退概率)。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5,并且dropout只在训练期间有效

dropout1, dropout2 = 0.2, 0.5class Net(nn.Module):def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,is_training=True):super(Net, self).__init__()self.num_inputs = num_inputsself.training = is_trainingself.lin1 = nn.Linear(num_inputs, num_hiddens1)self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)self.lin3 = nn.Linear(num_hiddens2, num_outputs)self.relu = nn.ReLU()def forward(self, X):H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))# 只有在训练模型时才使用dropoutif self.training == True:# 在第一个全连接层之后添加一个dropout层H1 = dropout_layer(H1, dropout1)H2 = self.relu(self.lin2(H1))if self.training == True:# 在第二个全连接层之后添加一个dropout层H2 = dropout_layer(H2, dropout2)out = self.lin3(H2)return outnet = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

训练和测试

这类似于前面描述的多层感知机训练和测试。

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

运行结果:
在这里插入图片描述

简洁实现

对于深度学习框架的高级API,我们只需在每个全连接层之后添加一个Dropout层,将暂退概率作为唯一的参数传递给它的构造函数。在训练时,Dropout层将根据指定的暂退概率随机丢弃上一层的输出。在测试时,Dropout层仅传递数据。

import torch
from torch import nn
from d2l import torch as d2lnum_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256dropout1, dropout2 = 0.2, 0.5net = nn.Sequential(nn.Flatten(),nn.Linear(784, 256),nn.ReLU(),# 在第一个全连接层之后添加一个dropout层nn.Dropout(dropout1),nn.Linear(256, 256),nn.ReLU(),# 在第二个全连接层之后添加一个dropout层nn.Dropout(dropout2),nn.Linear(256, 10))def init_weights(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, std=0.01)net.apply(init_weights)num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
d2l.plt.show()

运行结果:
在这里插入图片描述

小结

1、dropout在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
2、dropout可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
3、dropout将活性值h替换为具有期望值h的随机变量。
4、dropout仅在训练期间使用。

相关文章:

机器学习深度学习——Dropout

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——权重衰减 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助 Drop…...

Intel和AMD 与 x86,ARM,MIPS有什么区别?

先说amd和intel amd和Intel这俩公司的渊源很深&#xff0c;早期时Intel先是自己搞了个x86架构&#xff0c;然后amd拿到了x86的授权也可以自己做x86了。接着intel向64位过渡的时候自己搞了个ia64&#xff08;x64架构&#xff09;但是因为和x86架构不兼容市场反应极差&#xff0…...

QT编写的串口助手

QT编写的串口助手 提前的知识 创建UI界面工程 找帮助文档 添加串口的宏...

C语言字符串的处理

用惯了Java C#这些语言&#xff0c;C语言中处理字符串还是有些不习惯的&#xff0c;所以这里写一下学习笔记。 C中字符串就是字符数组&#xff0c;是指向字符的指针&#xff0c;并且以空字符 \0 结尾&#xff0c;字符串作为函数的参数传递时一般使用指针类型&#xff0c;使用数…...

Docker 阿里云容器镜像服务

阿里云-容器镜像服务ACR 将本地/服务器docker image&#xff08;镜像&#xff09;推送到 阿里云容器镜像服务仓库 1. 在容器镜像服务ACR中创建个人实例 2. 进入个人实例 > 命名空间 创建命名空间 3. 进入个人实例 > 镜像仓库 创建镜像仓库 4. 进入镜像仓库 > 基本信…...

10kV 电力电缆交流耐压试验方案

...

【雕爷学编程】MicroPython动手做(20)——掌控板之三轴加速度6

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…...

链路 聚合

静态链路聚合&#xff1a;多数内网使用 。非物理直连建议与BFD联动 动态链路聚合LACP&#xff1a;是公有协议、内网、二层专线接口都能使用&#xff0c;现网多数使用此方式链路 聚合 PAGP&#xff1a;思科私有协议&#xff0c;只支持思科设备使&#xff0c;现网多数不用...

DPN(Dual Path Network)网络结构详解

论文&#xff1a;Dual Path Networks 论文链接&#xff1a;https://arxiv.org/abs/1707.01629 代码&#xff1a;https://github.com/cypw/DPNs MXNet框架下可训练模型的DPN代码&#xff1a;https://github.com/miraclewkf/DPN 我们知道ResNet&#xff0c;ResNeXt&#xff0c;D…...

【转载】Gin框架优雅退出

转载自&#xff1a; https://juejin.cn/post/7212786062224146487 Gin是一个非常流行的Web框架&#xff0c;经常被用于构建高性能、易于维护的Web应用。在领域驱动设计&#xff08;DDD&#xff09;和微服务等方面也有广泛应用。但是&#xff0c;像其他应用程序一样&#xff0c;…...

【数字IC设计】VCS仿真DesignWare IP

DesignWare介绍 DesignWare是SoC/ASIC设计者最钟爱的设计IP库和验证IP库。它包括一个独立于工艺的、经验证的、可综合的虚拟微架构的元件集合&#xff0c;包括逻辑、算术、存储和专用元件系列&#xff0c;超过140个模块。DesignWare和 Design Compiler的结合可以极大地改进综合…...

【*1900 图论+枚举思想】CF1328 E

Problem - E - Codeforces 题意&#xff1a; 思路&#xff1a; 注意到题目的性质&#xff1a;满足条件的路径个数是极少的&#xff0c;因为每个点离路径的距离<1 先考虑一条链&#xff0c;那么直接就选最深那个点作为端点即可 为什么&#xff0c;因为我们需要遍历所有点…...

AutoSAR系列讲解(实践篇)10.5-通信管理模块

目录 一、ComM 1、内部唤醒 2、外部唤醒 二、CanSM 三、状态关联 之前讲解了BswM和EcuM,详细讲解了BswM的配置,而大部分的配置都在BswM中做了,EcuM的配置就很简单了,基本上勾一勾就ok了。下面我们 来讲解模式管理还可能用到的通信模块 一、ComM ComM就像一个通信的总…...

2023.7.30(epoll实现并发服务器)

服务器 #include <arpa/inet.h> #include <netinet/in.h> #include <netinet/ip.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/epoll.h> #include <sys/socket.h> #include <sys/types.…...

小研究 - 基于解析树的 Java Web 灰盒模糊测试(一)

由于 Java Web 应用业务场景复杂, 且对输入数据的结构有效性要求较高, 现有的测试方法和工具在测试Java Web 时存在测试用例的有效率较低的问题. 为了解决上述问题, 本文提出了基于解析树的 Java Web 应用灰盒模糊测试方法. 首先为 Java Web 应用程序的输入数据包进行语法建模创…...

SpringBoot接手JSP项目--【JSB项目实战】

SpringBoot系列文章目录 SpringBoot知识范围-学习步骤【JSB系列之000】 文章目录 SpringBoot系列文章目录[TOC](文章目录) SpringBoot技术很多很多工作之初&#xff0c;面临JSP的老项目我要怎么办环境及工具&#xff1a;项目里可能要用到的技术JSPjstl其它的必要知识 上代码WE…...

Python模块psycopg2连接postgresql

目录 1. 基础语法 2. 基础用法 3. 多条SQL 4. 事务SQL 1. 基础语法 语法 psycopg2.connect(dsn #指定连接参数。可以使用参数形式或 DSN 形式指定。host #指定连接数据库的主机名。dbname #指定数据库名。user #指定连接数据库使用的用户名。…...

Kotlin基础(八):泛型

前言 本文主要讲解kotlin泛型&#xff0c;主要包括泛型基础&#xff0c;类型变异&#xff0c;类型投射&#xff0c;星号投射&#xff0c;泛型函数&#xff0c;泛型约束&#xff0c;泛型在Android中的使用。 Kotlin文章列表 Kotlin文章列表: 点击此处跳转查看 目录 1.1 泛型基…...

Java学习笔记——(10)环境变量path配置及其作用

环境变量的作用为了在 Dos 的任务目录&#xff0c;可以去使用 javac 和 java开发工具命令 先配置 JAVA_HOME 指向 jdk 安装的主目录&#xff08;避免开发中出现问题&#xff09; 编辑 path 环境变量(开发环境)&#xff0c;增加 %JAVA_HOME%\bin 编辑 path 环境变量(运行环境…...

【图像去噪】基于进化算法——自组织迁移算法(SOMA)的图像去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

GO协程(Goroutine)问题总结

在使用Go语言来编写代码时&#xff0c;遇到的一些问题总结一下 [参考文档]&#xff1a;https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现&#xff1a; 今天在看到这个教程的时候&#xff0c;在自己的电…...