leetcode1219. 黄金矿工(java)
黄金矿工
- leetcode1219. 黄金矿工
- 题目描述
- 回溯算法
- 代码
- 回溯算法
leetcode1219. 黄金矿工
难度: 中等
eetcode 1219 黄金矿工
题目描述
你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0。
为了使收益最大化,矿工需要按以下规则来开采黄金:
每当矿工进入一个单元,就会收集该单元格中的所有黄金。
矿工每次可以从当前位置向上下左右四个方向走。
每个单元格只能被开采(进入)一次。
不得开采(进入)黄金数目为 0 的单元格。
矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。
示例 1:
输入:grid = [[0,6,0],[5,8,7],[0,9,0]]
输出:24
解释:
[[0,6,0],
[5,8,7],
[0,9,0]]
一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:
输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
输出:28
解释:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。
提示:
1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
最多 25 个单元格中有黄金。
回溯算法
首先了解什么是回溯算法:
解决一个回溯问题,实际上就是一个决策树的遍历过程,站在回溯树的一个节点上,你只需要思考 3 个问题:
- 路径:也就是已经做出的选择。
- 选择列表:也就是你当前可以做的选择。
- 结束条件:也就是到达决策树底层,无法再做选择的条件。
代码框架:
result = []
def backtrack(路径, 选择列表):if 满足结束条件:result.add(路径)returnfor 选择 in 选择列表:做选择backtrack(路径, 选择列表)撤销选择
关于本体的解题思路:
我们首先在 m×nm \times nm×n 个网格内枚举起点。只要格子内的数大于 000,它就可以作为起点进行开采。
记枚举的起点为 (i,j),我们就可以从 (i,j)开始进行递归 + 回溯,枚举所有可行的开采路径。我们用递归函数 dfs(x,y,gold)\进行枚举,其中 (x,y)(x, y)(x,y) 表示当前所在的位置,gold\textit{gold}gold 表示在开采位置 (x,y)(x, y)(x,y) 之前,已经拥有的黄金数量。根据题目的要求,我们需要进行如下的步骤:
我们需要将 gold 更新为 gold+grid[x][y],表示对位置(x,y) 进行开采。由于我们的目标是最大化收益,因此我们还要维护一个最大的收益值 ans,并在这一步使用 gold\textit{gold}gold 更新ans;
我们需要枚举矿工下一步的方向。由于矿工每次可以从当前位置向上下左右四个方向走,因此我们需要依次枚举每一个方向。如果往某一个方向不会走出网格,并且走到的位置的值不为 0,我们就可以进行递归搜索;
在搜索完所有方向后,我们进行回溯。
代码
class Solution {int[][]g;int m,n;//标记已经走过的路线boolean[][]vis;//标记四个方向,矿工每到一个地方,都有四个方向可以选择.int[][]dirs = new int[][]{{1,0},{-1,0},{0,-1},{0,1}};public int getMaximumGold(int[][]gird){g = gird;m = g.length;n = g[0].length;vis = new boolean[m][n];int ans = 0;for (int i = 0; i < m;i++){for (int j = 0; j < n;j++){if (g[i][j] != 0){vis[i][j] = true;ans = Math.max(ans,dfs(i,j));vis[i][j] = false;}}}return ans;}/*** 开始回溯计算,每个点向四个方向开始移动的最大值* @param i* @param j* @return*/public int dfs(int i,int j){int ans = g[i][j];//枚举四个方向for (int[]d : dirs){int ni = i + d[0];int nj = j + d[1];if (ni < 0 || nj < 0 || ni >= m || nj >= n){continue;}if (g[ni][nj] == 0){continue;}//已经走过的不在重复计算if (vis[ni][nj]){continue;}//标记已选vis[ni][nj] = true;ans = Math.max(ans,g[i][j] + dfs(ni,nj));vis[ni][nj] = false;}return ans;}
}
回溯算法
leetcode698. 划分为k个相等的子集
leetcode93. 复原 IP 地址
leetcode306. 累加数
相关文章:
leetcode1219. 黄金矿工(java)
黄金矿工 leetcode1219. 黄金矿工题目描述回溯算法代码 回溯算法 leetcode1219. 黄金矿工 难度: 中等 eetcode 1219 黄金矿工 题目描述 你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n 的网格 grid 进行了标注。每个单元…...
Svelte框架入门
关键词 前端框架、编译器、响应式、模板 介绍 Svelte /svelt/ adj. 苗条的;线条清晰的;和蔼的 Svelte是一个前端组件框架,就像它的英文名字一样,Svelte的目标是打造一个更高性能的响应性前端框架。 Svelte类似于React和Vue框架&am…...

在linux中进行arm交叉编译体验tiny6410裸机程序开发流程
在某鱼上找了一个友善之臂的Tiny6410开发板用来体验一下嵌入式开发。这次先体验一下裸机程序的开发流程,由于这个开发板比较老旧了,官方文档有很多过期的内容,所以记录一下整个过程。 1. 交叉编译器安装 按照光盘A中的文档《04- Tiny6410 L…...

SpringBoot实战(二十三)集成 SkyWalking
目录 一、简介二、拉取镜像并部署1.拉取镜像2.运行skywalking-oap容器3.运行skywalking-ui容器4.访问页面 三、下载解压 agent1.下载2.解压 四、创建 skywalking-demo 项目1.Maven依赖2.application.yml3.DemoController.java 五、构建启动脚本1.startup.bat2.执行启动脚本3.发…...

深度学习实践——卷积神经网络实践:裂缝识别
深度学习实践——卷积神经网络实践:裂缝识别 系列实验 深度学习实践——卷积神经网络实践:裂缝识别 深度学习实践——循环神经网络实践 深度学习实践——模型部署优化实践 深度学习实践——模型推理优化练习 深度学习实践——卷积神经网络实践ÿ…...

linux | vscode | makefile | c++编译和调试
简单介绍环境: vscode 、centos、 gcc、g、makefile 简单来说就是,写好项目然后再自己写makefile脚本实现编译。所以看这篇博客的用户需要了解gcc编译的一些常用命令以及makefile语法。在网上看了很多教程,以及官网也看了很多次,最…...

Spring | Bean 作用域和生命周期
一、通过一个案例来看 Bean 作用域的问题 Spring 是用来读取和存储 Bean,因此在 Spring 中 Bean 是最核心的操作资源,所以接下来我们深入学习⼀下 Bean 对象 假设现在有⼀个公共的 Bean,提供给 A 用户和 B 用户使用,然而在使用的…...
培训(c++题解)
题目描述 某培训机构的学员有如下信息: 姓名(字符串)年龄(周岁,整数)去年 NOIP 成绩(整数,且保证是 5 的倍数) 经过为期一年的培训,所有同学的成绩都有所提…...

ansible-playbook编写 lnmp 剧本
ansible-playbook编写 lnmp 剧本 vim /opt/lnmp/lnmp.yaml执行剧本 ansible-playbook lnmp.yaml...

需求太多处理不过来?MoSCoW模型帮你
一、MoSCoW模型是什么 MoSCoW模型 是在项目管理、软件开发中使用的一种排序优先级的方法,以便开发人员、产品经理、客户对每个需求交付的重要性达成共识。 MoSCoW是一个首字母缩略词,代表: M(Must have):…...

Vue 3:玩一下web前端技术(六)
前言 本章内容为VUE请求后端技术与相关技术讨论。 上一篇文章地址: Vue 3:玩一下web前端技术(五)_Lion King的博客-CSDN博客 下一篇文章地址: Vue 3:玩一下web前端技术(七)_Lio…...

【点云处理教程】00计算机视觉的Open3D简介
一、说明 Open3D 是一个开源库,使开发人员能够处理 3D 数据。它提供了一组用于 3D 数据处理、可视化和机器学习任务的工具。该库支持各种数据格式,例如 .ply、.obj、.stl 和 .xyz,并允许用户创建自定义数据结构并在程序中访问它们。 Open3D 广…...

Windows10系统还原操作
哈喽,大家好,我是雷工! 复制了下虚拟机的Win10系统,但其中有一些软件,想实现类似手机的格式化出厂操作,下面记录Windows10系统的还原操作。 一、系统环境: 虚拟机内的Windows10,64…...
Django学习笔记-模板(Template)基础
使用模块可以很方便的执行一些数据操作,然后根据传入的数据直接在模板html文件中进行处理。 1.Django中的模板配置 Django的模板引擎在sttings.py文件中: TEMPLATES [{# 模板引擎,默认为django模板BACKEND: django.template.backends.dja…...

使用 NVM(Node Version Manager)管理 Node.js 版本
使用 NVM(Node Version Manager)管理 Node.js 版本 步骤一:安装 NVM NVM 是一个用于安装和管理不同版本的 Node.js 的工具。首先,你需要确保你的系统上已经安装了 NVM。可以通过以下命令检查 NVM 是否已经安装: nvm …...

(文章复现)梯级水光互补系统最大化可消纳电量期望短期优化调度模型matlab代码
参考文献: [1]罗彬,陈永灿,刘昭伟等.梯级水光互补系统最大化可消纳电量期望短期优化调度模型[J].电力系统自动化,2023,47(10):66-75. 1.基本原理 1.1 目标函数 考虑光伏出力的不确定性,以梯级水光互补系统的可消纳电量期望最大为目标,函数…...

tinkerCAD案例:24. Ruler - Measuring Lengths 标尺 -量勺
tinkerCAD案例:24. Ruler - Measuring Lengths 标尺 - 测量长度 Project Overview: 项目概况: A machine shop, where any idea can become a reality, can cost millions and million of dollars. Still, the most important tool in the shop is the…...

linux系统编程重点复习--线程同步
目录 复习目标: 1 互斥锁 1.1互斥锁的使用步骤 1.2 练习 1.3 死锁 2 读写锁 3 条件变量 4 信号量 复习目标: 熟练掌握互斥量的使用说出什么叫死锁以及解决方案熟练掌握读写锁的使用熟练掌握条件变量的使用理解条件变量实现的生产消费者模型理解…...

【Docker 学习笔记】Windows Docker Desktop 安装
文章目录 一、前言二、Windows Docker 安装1. 基于Hyper-V后端和Windows容器的安装2. 基于WSL2后端的安装(推荐)3. 安装Docker Desktop on Windows4. 启动并验证Docker Desktop 一、前言 Docker并非是一个通用的容器工具,它依赖于已存在并运…...

getInputStream has already been called for this request 问题记录
问题背景 HttpServletRequest.getReader() HttpServletRequest.getInputStream() 不能在过滤器中读取一次二进制流(字符流),又在另外一个Servlet中读取一次,即一个InputSteam(BufferedReader)对象在被读取完成后,将无…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决
问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...

动态规划-1035.不相交的线-力扣(LeetCode)
一、题目解析 光看题目要求和例图,感觉这题好麻烦,直线不能相交啊,每个数字只属于一条连线啊等等,但我们结合题目所给的信息和例图的内容,这不就是最长公共子序列吗?,我们把最长公共子序列连线起…...

基于Python的气象数据分析及可视化研究
目录 一.🦁前言二.🦁开源代码与组件使用情况说明三.🦁核心功能1. ✅算法设计2. ✅PyEcharts库3. ✅Flask框架4. ✅爬虫5. ✅部署项目 四.🦁演示效果1. 管理员模块1.1 用户管理 2. 用户模块2.1 登录系统2.2 查看实时数据2.3 查看天…...
生成对抗网络(GAN)损失函数解读
GAN损失函数的形式: 以下是对每个部分的解读: 1. , :这个部分表示生成器(Generator)G的目标是最小化损失函数。 :判别器(Discriminator)D的目标是最大化损失函数。 GAN的训…...

河北对口计算机高考MySQL笔记(完结版)(2026高考)持续更新~~~~
MySQL 基础概念 数据(Data):文本,数字,图片,视频,音频等多种表现形式,能够被计算机存储和处理。 **数据库(Data Base—简称DB):**存储数据的仓库…...

RocketMQ 客户端负载均衡机制详解及最佳实践
延伸阅读:🔍「RocketMQ 中文社区」 持续更新源码解析/最佳实践,提供 RocketMQ 专家 AI 答疑服务 前言 本文介绍 RocketMQ 负载均衡机制,主要涉及负载均衡发生的时机、客户端负载均衡对消费的影响(消息堆积/消费毛刺等…...