【EI/SCOPUS会议征稿】第三届检测技术与自动化工程国际学术会议 (TTAE 2023)

第三届检测技术与自动化工程国际学术会议 (TTAE 2023)原定将于2023年9月15-17日在中国·西安召开。
检测技术与自动化工程国际学术会议将每年举行一次,旨在将“检测技术”和“自动化工程”等学术领域的学者、专家、研发者、技术人员聚集到一个学术交流的平台,并且提供一个共享科研成果、前沿技术,了解学术发展趋势,拓宽研究思路,加强学术研究和探讨,促进学术成果产业化合作的平台。大会诚邀国内外高校、科研机构专家、学者,企业界人士及其他相关人员参会交流。
第三届检测技术与自动化工程国际学术会议 (TTAE 2023)诚邀领域内专家学者参会!
重要信息
大会网站:https://ais.cn/u/INBZvi(点击参会/投稿)
大会时间:2023年9月15-17日
大会地点:中国·西安
接受/拒稿通知:投稿后7个工作日内
收录检索:SCI,EI,Scopus
论文出版
(1).EI
本会议所有的投稿都必须经过2-3位组委会专家审稿,经过严格的审稿之后,最终所录用的论文将被Conference Proceedings出版,并提交至EI Compendex, Scopus检索。
◆论文不得少于4页。
◆会议论文模板下载→ 前往官网相关栏目下载
◆会议仅接受全英稿件。
(2). SCI
额外征集优秀论文,按SCI期刊论文要求审稿,直接推荐至包括并不限于以下:
期刊1:Wireless Communications and Mobile Computing(ISSN:1530-8669,IF:2.336)
期刊2:Journal of Sensors(ISSN: 1687-725X,IF:2.137)
期刊3:PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING
期刊4:SCIENCE(ISSN: 0954-4062,IF:1.762)
征稿主题
| 自动化工程 导航、制导与控制 惯性技术及导航设备 运动载体导航与定位 信息融合与智能控制 智能仪器控制技术 GNSS技术及其应用 新型控制技术及其在导航中的应用 精密仪器及机械 微型机电系统和微型机器人 仿生、智能机械、特种机器人智能机械及其运动控制 应用技术及系统设计和自动化新技术 传感器无线传输网和现场总线控制技术 仪器嵌入式技术及网络控制技术 系统工程理论与应用 智能化、网络化、集成化现代检测技术与系统 新型传感器及数据融合技术 模糊逻辑控制系统 模糊与神经网络工程导论 制造工业自动化设备与系统 无线传感器网络技术 | 检测技术 现代检测技术 集成化系统开发的技术基础 自动测试理论 测试计量技术及仪器 复杂系统建模与仿真 MATLAB系统分析语言及应用 多传感器融合理论与应用 最优估计与系统辨识 人工神经网络 在线检测及无损检测技术 模糊理论与应用 光电检测及计算机视觉检测技术 遗传算法与进化算法 控制网络与现场总线 微纳米检测 智能化仪表 遥感和遥测技术 建模与仿真 精密测试与传感器技术 |
| 其他相关主题见官网 | |
投稿须知
1.论文必须是英文稿件,且论文应具有学术或实用价值,未在国内外学术期刊或会议发表过。发表论文的作者需提交全文进行同行评审,只做报告不发表论文的作者只需提交摘要。
2.审稿流程:本次会议采用先投稿,先送专家评审的方式进行,审稿周期约1-2周。
**注:被录用且完成注册的论文,如需申请撤稿,将扣除30%的手续费。已提交出版的文章,则不接受任何退款或撤稿申请。
3.作者可通过CrossCheck, Turnitin或其他查询体统自费查重,否则由文章重复率引起的被拒搞将由作者自行承担责任。涉嫌抄袭的论文将不被出版,且公布在会议主页。
参会方式
1、作者参会:一篇录用文章允许一名作者免费参会;
2、主讲嘉宾:申请主题演讲,由组委会审核;
3、口头演讲:申请口头报告,时间为15分钟;
4、海报展示:申请海报展示,A1尺寸,彩色打印;
5、听众参会:不投稿仅参会,也可申请演讲及展示。
相关文章:
【EI/SCOPUS会议征稿】第三届检测技术与自动化工程国际学术会议 (TTAE 2023)
第三届检测技术与自动化工程国际学术会议 (TTAE 2023)原定将于2023年9月15-17日在中国西安召开。 检测技术与自动化工程国际学术会议将每年举行一次,旨在将“检测技术”和“自动化工程”等学术领域的学者、专家、研发者、技术人员聚集到一个学术交流的平台…...
时序预测 | Python实现NARX-DNN空气质量预测
时序预测 | Python实现NARX-DNN空气质量预测 目录 时序预测 | Python实现NARX-DNN空气质量预测效果一览基本介绍研究内容程序设计参考资料效果一览 基本介绍 时序预测 | Python实现NARX-DNN空气质量预测 研究内容 Python实现NARX-DNN空气质量预测,使用深度神经网络对比利时空气…...
华为数字化转型之道-读书笔记1
第一章 数字化转型,华为的战略选择 1. 数字化转型是企业的必答题 1.1 解决时代难题:“鲍莫尔成本病” “体验变流量,流量变收入”是其常见的商业模式。数字化平台通过“作业即记录、记录及数据”的方式,能给企业带来很多好处&a…...
环形链表 II(JS)
环形链表 II 题目 给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,…...
【字节三面】41. 缺失的第一个正数
41. 缺失的第一个正数 解题思路 在原数组上进行操作 如果数字是2 将其放在索引为1的位置上数字x 放在索引为x - 1的位置上对于长度为n的数组 其中没有出现的最小正整数只能在[1,n 1]引入如果1 - n 这些数都出现了 那么答案就是n 1如果都没有出现完全 那么答案就在[1,n]中没…...
Linux echo命令与反引号、重定向符号以及管道符
echo echo命令echo结合反引号echo结合重定向符echo结合管道符 echo命令 Linux中的echo命令用于在终端输出指定的文本内容或变量值。 基本语法如下: echo [选项] [字符串]常用选项包括: -e:启用特殊字符的解析,例如\n表示换行符…...
HTML基础知识点总结
目录 1.HTML简介 2.HTML基础结构 主要字符: 3.基础知识 (一)p标签 (二)hr标签 (三)尖角号 (四)版权号 (五)div和span div span (六)列表 (1&…...
VS附加到进程调试
操作: 要附加到进程中调试外部可执行文件,您需要使用Visual Studio的“调试附加”功能。以下是附加到进程中调试外部可执行文件的步骤: 打开您要调试的源代码文件或可执行文件。打开Visual Studio。选择“调试”菜单,然后选择“…...
基于深度学习的高精度狗狗检测识别系统(PyTorch+Pyside6+YOLOv5模型)
摘要:基于深度学习的高精度狗狗检测识别系统可用于日常生活中检测与定位120类狗狗目标,利用深度学习算法可实现图片、视频、摄像头等方式的狗狗目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练…...
从互联网到云时代,Apache RocketMQ 是如何演进的?
作者:隆基 2022 年,RocketMQ 5.0 的正式版发布。相对于 4.0 版本而言,架构走向云原生化,并且覆盖了更多业务场景。 消息队列演进史 操作系统、数据库、中间件是基础软件的三驾马车,而消息队列属于最经典的中间件之一…...
XML (可扩展标记语言)
目录 一、概念 二. 使用: 1. 基本语法: 2. 组成部分: (1)文档声明 (2) 指令(了解):结合css (3) 标签:标签名称自定义 (4)…...
socket()、bind()、listen()、htons()
socket() socket() 是一个系统调用函数,用于创建一个套接字(socket),通过该套接字进行网络通信。在这段代码中,socket() 函数被用于创建一个本地套接字。 具体来说,这是 socket() 在代码中的使用方式&…...
提升开发效率,Lombok的链式编程和构建模式
目录 链式编程 定义 代码示例 编辑 Accessors(chaintrue) 开启链式编程 编辑 Accessors(chain true,fluent true) 去除set和get 构建模式 定义 代码示例 编辑 踩坑 Singular 定义 代码示例 踩坑默认值情况 编辑 With 定义 代码示例 链式编程 定义 链…...
DuDuTalk:AI语音工牌如何帮助教培公司高效管理课程顾问团队
近年来,随着人工智能的快速发展,越来越多的公司开始利用AI技术来提高工作效率和管理效果。在教育培训行业中,课程顾问团队的管理对于公司的运营和发展至关重要。 而在实际管理中,受教培人员素质参差不齐,能力差异大&a…...
C语言——静态库和动态库的创建和使用
使用库函数是源码的一种保护 库函数其实不是新鲜的东西,我们一直都在用,比如C库。我们执行pringf() 这个函数的时候,就是调用C库的函数. 下面记录静态库和动态库的生成和使用. 静态库:libxxx.a 动态库:libxxx.so 静态库: 在程序编译的时候,将库编译进可执行程序中, 运行的…...
数学学习——最优化问题引入、凸集、凸函数、凸优化、梯度、Jacobi矩阵、Hessian矩阵
文章目录 最优化问题引入凸集凸函数凸优化梯度Jacobi矩阵Hessian矩阵 最优化问题引入 例如:有一根绳子,长度一定的情况下,需要如何围成一个面积最大的图像?这就是一个最优化的问题。就是我们高中数学中最常见的最值问题。 最优化…...
HCIP期中实验
考试需求 1 、该拓扑为公司网络,其中包括公司总部、公司分部以及公司骨干网,不包含运营商公网部分。 2 、设备名称均使用拓扑上名称改名,并且区分大小写。 3 、整张拓扑均使用私网地址进行配置。 4 、整张网络中,运行 OSPF 协议…...
【Git系列】IDEA集成Git
🐳IDEA集成Git 🧊1. idea配置git🧊2. idea添加暂存区和提交🪟创建文件🪟将整个项目添加到暂存区🪟提交到本地仓库🪟查看控制台,显示提交的信息🪟修改文件,再次…...
短视频矩阵源码开发搭建分享--多账号授权管理
目录 文章目录 前言 一、矩阵号系统是什么? 二、使用步骤 1.创建推广项目 2.多账号授权 3.企业号智能客服系统 总结 前言 短视频多账号矩阵系统,通过多账号一键授权管理的方式,为运营人员打造功能强大及全面的“矩阵式“管理平台。…...
数据中台系列2:rabbitMQ 安装使用之 window 篇
RabbitMQ 是一个开源的消息队列系统,是高级消息队列协议(AMQP)的标准实现,用 erlang 语言开发。 因此安装 RabbitMQ 之前要先安装好 erlang。 1、安装 erlang 到 这里 下载本机能运行的最新版 erlang 安装包。如果本机没有装过 …...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
