29.利用fminbnd 求解 最大容积问题(matlab程序)
1.简述
用于求某个给定函数的最小值点。
使用方法是:
x=fminbnd(func,x1,x2)
func是函数句柄,然后x1和x2就是函数的区间,得到的结果就是使func取最小值的x值
当然也可以使用[x,fv]=fminbnd(func,x1,x2)的方式,这个时候fv就是函数 的最小值,即有:fv=f(x)
测试程序如下:
>> f=@(x) exp(x)-4*sin(x)+5;
>> [x,fv]=fminbnd(f,0,1)
x =
0.9048
fv =
4.3262
当然,如果在某个区间上是单调的,结果就有点意思了:
>> clear
>> f=@(x) x^-2*x-3;
>> [x,fv]=fminbnd(f,2,3)
x =
2.9999
fv =
-2.6667
看样子MATLAB是使用了定长小区间的方式计算的,而且结果也是错误的,这不免让人对这个函数的可靠性产生怀疑……
2.代码
主程序:
%% 最大容积问题
[xo,fo]=fminbnd('f1216',0,2)
子程序:
function [xf,fval,exitflag,output] = fminbnd(funfcn,ax,bx,options,varargin)
%FMINBND Single-variable bounded nonlinear function minimization.
% X = FMINBND(FUN,x1,x2) attempts to find a local minimizer X of the function
% FUN in the interval x1 < X < x2. FUN is a function handle. FUN accepts
% scalar input X and returns a scalar function value F evaluated at X.
%
% X = FMINBND(FUN,x1,x2,OPTIONS) minimizes with the default optimization
% parameters replaced by values in the structure OPTIONS, created with
% the OPTIMSET function. See OPTIMSET for details. FMINBND uses these
% options: Display, TolX, MaxFunEval, MaxIter, FunValCheck, PlotFcns,
% and OutputFcn.
%
% X = FMINBND(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
% structure with the function FUN in PROBLEM.objective, the interval
% in PROBLEM.x1 and PROBLEM.x2, the options structure in PROBLEM.options,
% and solver name 'fminbnd' in PROBLEM.solver.
%
% [X,FVAL] = FMINBND(...) also returns the value of the objective function,
% FVAL, computed in FUN, at X.
%
% [X,FVAL,EXITFLAG] = FMINBND(...) also returns an EXITFLAG that
% describes the exit condition. Possible values of EXITFLAG and the
% corresponding exit conditions are
%
% 1 FMINBND converged with a solution X based on OPTIONS.TolX.
% 0 Maximum number of function evaluations or iterations reached.
% -1 Algorithm terminated by the output function.
% -2 Bounds are inconsistent (that is, ax > bx).
%
% [X,FVAL,EXITFLAG,OUTPUT] = FMINBND(...) also returns a structure
% OUTPUT with the number of iterations taken in OUTPUT.iterations, the
% number of function evaluations in OUTPUT.funcCount, the algorithm name
% in OUTPUT.algorithm, and the exit message in OUTPUT.message.
%
% Examples
% FUN can be specified using @:
% X = fminbnd(@cos,3,4)
% computes pi to a few decimal places and gives a message upon termination.
% [X,FVAL,EXITFLAG] = fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))
% computes pi to about 12 decimal places, suppresses output, returns the
% function value at x, and returns an EXITFLAG of 1.
%
% FUN can be an anonymous function:
% X = fminbnd(@(x) sin(x)+3,2,5)
%
% FUN can be a parameterized function. Use an anonymous function to
% capture the problem-dependent parameters:
% f = @(x,c) (x-c).^2; % The parameterized function.
% c = 1.5; % The parameter.
% X = fminbnd(@(x) f(x,c),0,1)
%
% See also OPTIMSET, FMINSEARCH, FZERO, FUNCTION_HANDLE.
% References:
% "Algorithms for Minimization Without Derivatives",
% R. P. Brent, Prentice-Hall, 1973, Dover, 2002.
%
% "Computer Methods for Mathematical Computations",
% Forsythe, Malcolm, and Moler, Prentice-Hall, 1976.
% Original coding by Duane Hanselman, University of Maine.
% Copyright 1984-2018 The MathWorks, Inc.
% Set default options
defaultopt = struct( ...
'Display','notify', ...
'FunValCheck','off', ...
'MaxFunEvals',500, ...
'MaxIter',500, ...
'OutputFcn',[], ...
'PlotFcns',[], ...
'TolX',1e-4);
% If just 'defaults' passed in, return the default options in X
if nargin==1 && nargout <= 1 && strcmpi(funfcn,'defaults')
xf = defaultopt;
return
end
% initialization
if nargin<4
options = [];
end
% Detect problem structure input
problemInput = false;
if nargin == 1
if isa(funfcn,'struct')
problemInput = true;
[funfcn,ax,bx,options] = separateOptimStruct(funfcn);
else % Single input and non-structure.
error('MATLAB:fminbnd:InputArg',...
getString(message('MATLAB:optimfun:fminbnd:InputArg')));
end
end
if nargin < 3 && ~problemInput
error('MATLAB:fminbnd:NotEnoughInputs',...
getString(message('MATLAB:optimfun:fminbnd:NotEnoughInputs')));
end
% Check for non-double inputs
if ~isa(ax,'double') || ~isa(bx,'double')
error('MATLAB:fminbnd:NonDoubleInput',...
getString(message('MATLAB:optimfun:fminbnd:NonDoubleInput')));
end
% Check that options is a struct
if ~isempty(options) && ~isa(options,'struct')
error('MATLAB:fminbnd:ArgNotStruct',...
getString(message('MATLAB:optimfun:commonMessages:ArgNotStruct', 4)));
end
printtype = optimget(options,'Display',defaultopt,'fast');
tol = optimget(options,'TolX',defaultopt,'fast');
funValCheck = strcmp(optimget(options,'FunValCheck',defaultopt,'fast'),'on');
maxfun = optimget(options,'MaxFunEvals',defaultopt,'fast');
maxiter = optimget(options,'MaxIter',defaultopt,'fast');
% Check that MaxFunEvals and MaxIter are scalar double values;
% Their default values for some solvers are strings
if ischar(maxfun) || isstring(maxfun)
error('MATLAB:fminbnd:CharMaxFunEvals',...
getString(message('MATLAB:optimfun:fminbnd:CharMaxFunEvals')));
end
if ischar(maxiter) || isstring(maxiter)
error('MATLAB:fminbnd:CharMaxIter',...
getString(message('MATLAB:optimfun:fminbnd:CharMaxIter')));
end
funccount = 0;
iter = 0;
xf = []; fx = [];
switch printtype
case {'notify','notify-detailed'}
print = 1;
case {'none','off'}
print = 0;
case {'iter','iter-detailed'}
print = 3;
case {'final','final-detailed'}
print = 2;
otherwise
print = 1;
end
% Handle the output
outputfcn = optimget(options,'OutputFcn',defaultopt,'fast');
if isempty(outputfcn)
haveoutputfcn = false;
else
haveoutputfcn = true;
% Parse OutputFcn which is needed to support cell array syntax for OutputFcn.
outputfcn = createCellArrayOfFunctions(outputfcn,'OutputFcn');
end
% Handle the plot
plotfcns = optimget(options,'PlotFcns',defaultopt,'fast');
if isempty(plotfcns)
haveplotfcn = false;
else
haveplotfcn = true;
% Parse PlotFcns which is needed to support cell array syntax for PlotFcns.
plotfcns = createCellArrayOfFunctions(plotfcns,'PlotFcns');
end
% checkbounds
if ax > bx
exitflag = -2;
xf=[]; fval = [];
msg=getString(message('MATLAB:optimfun:fminbnd:ExitingLowerBoundExceedsUpperBound'));
if print > 0
disp(' ')
disp(msg)
end
output.iterations = 0;
output.funcCount = 0;
output.algorithm = 'golden section search, parabolic interpolation';
output.message = msg;
% Have not initialized OutputFcn; do not need to call it before returning
return
end
% Assume we'll converge
exitflag = 1;
header = ' Func-count x f(x) Procedure';
procedure=' initial';
% Convert to function handle as needed.
if isstring(funfcn)
funfcn = char(funfcn);
end
funfcn = fcnchk(funfcn,length(varargin));
if funValCheck
% Add a wrapper function, CHECKFUN, to check for NaN/complex values without
% having to change the calls that look like this:
% f = funfcn(x,varargin{:});
% x is the first argument to CHECKFUN, then the user's function,
% then the elements of varargin. To accomplish this we need to add the
% user's function to the beginning of varargin, and change funfcn to be
% CHECKFUN.
varargin = [{funfcn}, varargin];
funfcn = @checkfun;
end
% Initialize the output and plot functions.
if haveoutputfcn || haveplotfcn
[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'init',funccount,iter, ...
fx,procedure,varargin{:});
if stop
[xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
if print > 0
disp(output.message)
end
return;
end
end
% Compute the start point
seps = sqrt(eps);
c = 0.5*(3.0 - sqrt(5.0));
a = ax; b = bx;
v = a + c*(b-a);
w = v; xf = v;
d = 0.0; e = 0.0;
x= xf; fx = funfcn(x,varargin{:});
funccount = funccount + 1;
% Check that the objective value is a scalar
if numel(fx) ~= 1
error('MATLAB:fminbnd:NonScalarObj',...
getString(message('MATLAB:optimfun:fminbnd:NonScalarObj')));
end
% Display the start point if required
if print > 2
disp(' ')
disp(header)
fprintf('%5.0f %12.6g %12.6g %s\n',funccount,xf,fx,procedure)
end
% OutputFcn and PlotFcns call
% Last x passed to outputfcn/plotfcns; has the input x's shape
if haveoutputfcn || haveplotfcn
[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,xf,'iter',funccount,iter, ...
fx,procedure,varargin{:});
if stop % Stop per user request.
[xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
if print > 0
disp(output.message)
end
return;
end
end
fv = fx; fw = fx;
xm = 0.5*(a+b);
tol1 = seps*abs(xf) + tol/3.0;
tol2 = 2.0*tol1;
% Main loop
while ( abs(xf-xm) > (tol2 - 0.5*(b-a)) )
gs = 1;
% Is a parabolic fit possible
if abs(e) > tol1
% Yes, so fit parabola
gs = 0;
r = (xf-w)*(fx-fv);
q = (xf-v)*(fx-fw);
p = (xf-v)*q-(xf-w)*r;
q = 2.0*(q-r);
if q > 0.0, p = -p; end
q = abs(q);
r = e; e = d;
% Is the parabola acceptable
if ( (abs(p)<abs(0.5*q*r)) && (p>q*(a-xf)) && (p<q*(b-xf)) )
% Yes, parabolic interpolation step
d = p/q;
x = xf+d;
procedure = ' parabolic';
% f must not be evaluated too close to ax or bx
if ((x-a) < tol2) || ((b-x) < tol2)
si = sign(xm-xf) + ((xm-xf) == 0);
d = tol1*si;
end
else
% Not acceptable, must do a golden section step
gs=1;
end
end
if gs
% A golden-section step is required
if xf >= xm
e = a-xf;
else
e = b-xf;
end
d = c*e;
procedure = ' golden';
end
% The function must not be evaluated too close to xf
si = sign(d) + (d == 0);
x = xf + si * max( abs(d), tol1 );
fu = funfcn(x,varargin{:});
funccount = funccount + 1;
iter = iter + 1;
if print > 2
fprintf('%5.0f %12.6g %12.6g %s\n',funccount, x, fu, procedure);
end
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
[xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,'iter',funccount,iter, ...
fu,procedure,varargin{:});
if stop % Stop per user request.
[xf,fval,exitflag,output] = cleanUpInterrupt(xOutputfcn,optimValues);
if print > 0
disp(output.message);
end
return;
end
end
% Update a, b, v, w, x, xm, tol1, tol2
if fu <= fx
if x >= xf
a = xf;
else
b = xf;
end
v = w; fv = fw;
w = xf; fw = fx;
xf = x; fx = fu;
else % fu > fx
if x < xf
a = x;
else
b = x;
end
if ( (fu <= fw) || (w == xf) )
v = w; fv = fw;
w = x; fw = fu;
elseif ( (fu <= fv) || (v == xf) || (v == w) )
v = x; fv = fu;
end
end
xm = 0.5*(a+b);
tol1 = seps*abs(xf) + tol/3.0; tol2 = 2.0*tol1;
if funccount >= maxfun || iter >= maxiter
exitflag = 0;
output.iterations = iter;
output.funcCount = funccount;
output.algorithm = 'golden section search, parabolic interpolation';
fval = fx;
msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
output.message = msg;
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
end
return
end
end % while
fval = fx;
output.iterations = iter;
output.funcCount = funccount;
output.algorithm = 'golden section search, parabolic interpolation';
msg = terminate(xf,exitflag,fval,funccount,maxfun,iter,maxiter,tol,print);
output.message = msg;
% OutputFcn and PlotFcns call
if haveoutputfcn || haveplotfcn
callOutputAndPlotFcns(outputfcn,plotfcns,xf,'done',funccount,iter,fval,procedure,varargin{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function msg = terminate(~,exitflag,finalf,funccount,maxfun,~,~,tol,print)
switch exitflag
case 1
msg = ...
getString(message('MATLAB:optimfun:fminbnd:OptimizationTerminatedXSatisfiesCriteria', sprintf('%e',tol)));
if print > 1 % only print msg if not 'off' or 'notify'
disp(' ')
disp(msg)
end
case 0
if funccount >= maxfun
msg = getString(message('MATLAB:optimfun:fminbnd:ExitingMaxFunctionEvals', sprintf('%f',finalf)));
if print > 0
disp(' ')
disp(msg)
end
else
msg = getString(message('MATLAB:optimfun:fminbnd:ExitingMaxIterations', sprintf('%f',finalf)));
if print > 0
disp(' ')
disp(msg)
end
end
end
%--------------------------------------------------------------------------
function [xOutputfcn, optimValues, stop] = callOutputAndPlotFcns(outputfcn,plotfcns,x,state,funccount,iter, ...
f,procedure,varargin)
% CALLOUTPUTANDPLOTFCNS assigns values to the struct OptimValues and then calls the
% outputfcn/plotfcns. outputfcn and plotfcns are assumed to not be string
% objects but can be strings or handles.
%
% state - can have the values 'init','iter', or 'done'.
% For the 'done' state we do not check the value of 'stop' because the
% optimization is already done.
optimValues.funccount = funccount;
optimValues.iteration = iter;
optimValues.fval = f;
optimValues.procedure = procedure;
xOutputfcn = x; % Set xOutputfcn to be x
stop = false;
state = char(state); % in case string objects are ever passed in the future
% Call output functions
if ~isempty(outputfcn)
switch state
case {'iter','init'}
stop = callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:}) || stop;
case 'done'
callAllOptimOutputFcns(outputfcn,xOutputfcn,optimValues,state,varargin{:});
end
end
% Call plot functions
if ~isempty(plotfcns)
switch state
case {'iter','init'}
stop = callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:}) || stop;
case 'done'
callAllOptimPlotFcns(plotfcns,xOutputfcn,optimValues,state,varargin{:});
end
end
%--------------------------------------------------------------------------
function [x,FVAL,EXITFLAG,OUTPUT] = cleanUpInterrupt(xOutputfcn,optimValues)
% CLEANUPINTERRUPT updates or sets all the output arguments of FMINBND when the optimization
% is interrupted.
% Call plot function driver to finalize the plot function figure window. If
% no plot functions have been specified or the plot function figure no
% longer exists, this call just returns.
callAllOptimPlotFcns('cleanuponstopsignal');
x = xOutputfcn;
FVAL = optimValues.fval;
EXITFLAG = -1;
OUTPUT.iterations = optimValues.iteration;
OUTPUT.funcCount = optimValues.funccount;
OUTPUT.algorithm = 'golden section search, parabolic interpolation';
OUTPUT.message = getString(message('MATLAB:optimfun:fminbnd:OptimizationTerminatedPrematurelyByUser'));
%--------------------------------------------------------------------------
function f = checkfun(x,userfcn,varargin)
% CHECKFUN checks for complex or NaN results from userfcn.
f = userfcn(x,varargin{:});
% Note: we do not check for Inf as FMINBND handles it naturally.
if isnan(f)
error('MATLAB:fminbnd:checkfun:NaNFval',...
getString(message('MATLAB:optimfun:fminbnd:checkfun:NaNFval', localChar( userfcn ), sprintf( '%g', x ))));
elseif ~isreal(f)
error('MATLAB:fminbnd:checkfun:ComplexFval',...
getString(message('MATLAB:optimfun:fminbnd:checkfun:ComplexFval', localChar( userfcn ), sprintf( '%g', x ))));
end
%--------------------------------------------------------------------------
function strfcn = localChar(fcn)
% Convert the fcn to a character array for printing
if ischar(fcn)
strfcn = fcn;
elseif isstring(fcn) || isa(fcn,'inline')
strfcn = char(fcn);
elseif isa(fcn,'function_handle')
strfcn = func2str(fcn);
else
try
strfcn = char(fcn);
catch
strfcn = getString(message('MATLAB:optimfun:fminbnd:NameNotPrintable'));
end
end
3.运行结果
相关文章:

29.利用fminbnd 求解 最大容积问题(matlab程序)
1.简述 用于求某个给定函数的最小值点。 使用方法是: xfminbnd(func,x1,x2) func是函数句柄,然后x1和x2就是函数的区间,得到的结果就是使func取最小值的x值 当然也可以使用[x,fv]fminbnd(func,x1,x2)的方式,这个时候fv就是函数…...

express学习笔记7 - docker跟mysql篇
安装Docker和Navicat Docker 进官⽹https://docs.docker.com/get-docker/ 选择机型安装即可。 Navicat(也可以在网上找个破解版本) 进官⽹https://www.navicat.com/en/products/navicat-premium 安装完之后连接新建⼀个数据库连接 然后再⾥⾯新建⼀个数…...

Leetcode(一):数组、链表部分经典题目详解(JavaScript版)
数组、链表部分算法题 一、数组1. 二分查找2. 移除数组元素3. 有序数组的平方4. 长度最小的子数组5. 螺旋矩阵 二、链表1. 删除链表元素2. 设计链表3.反转链表4.两两交换链表中的节点5.删除链表倒数第n个节点6.环形链表 提前声明:本博客内容均为笔者为了方便个人理解…...

内网穿透的底层原理是什么
目录 内网穿透的功能 内网穿透的底层原理 内网穿透的功能 前段时间研究了一下内网穿透,果真是一个神奇的技术,就拿企业级内网穿透-神卓互联来说,在需要在本地安装一个神卓互联客户端,简单设置一下服务应用的端口号,就…...

Bash配置文件
当Bash以登录Shell启动的时候,会首先读取并执行文件“/etc/profile”中的命令。 接着,Bash会依次查找文件“~/.bash_profile”,“~/.bash_login”,“~/.profile”,读取并执行找到的第一个文件中的命令。也就是说&…...

写Acknowledgement的时候,latex日志出现警告
用latex写论文的时候,\section{Conclusion}下面添加 \backmatter \bmhead{Acknowledgments}时报错:错误log: \bmhead Package hyperref Warning: Difference (4) between bookmark levels is greater than one, level....错误原因ÿ…...

GCC生成map文件
要生成GCC的map文件,可以使用以下指令: gcc <source_files> -Wl,-Map<output_file>.map 其中, <source_files>是要编译的源文件列表,<output_file>是生成的map文件的名称-Wl选项告诉GCC将后面的参数传…...

IOS看书最终选择|源阅读转换|开源阅读|IOS自签
环境:IOS想使用 换源阅读 问题:换新手机,源阅读下架后,没有好的APP阅读小说 解决办法:自签APP 转换源仓库书源 最终预览 :https://rc.real9.cn/ 背景:自从我换了新iPhone手机,就无法…...

easyui实用点
easyui实用点 1.下拉框(input框只能选不能手动输入编辑) data-options"editable:false"//不可编辑2.日期框,下拉框,文本框等class class"easyui-datebox"//不带时分秒 class"easyui-datetimebox"…...

算法训练营第五十六天||● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇
● 583. 两个字符串的删除操作 这道题涉及到两个字符串删除操作,注意递推公式,理解不到位,需要再次做 确定dp数组(dp table)以及下标的含义 dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾…...

C语言每日一题:10.不使用+-*/实现加法+找到所有数组中消失的数。
题目一: 题目链接: 思路一: 1.两个数二进制之间进行异或如果不产生进位操作那么两个数的和就是就是两个数进行异或的结果。 举例:5(0101)2(0010)进行异或等于:7…...

LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443
1、问题: https://github.com/CocoaPods/Specs.git/:LibreSSL SSL_connect: SSL_ERROR_SYSCALL in connection to github.com:443的解决办法 出现这个问题的原因基本都是代理的问题: 只需要加上代理就可以了: #http代理 git conf…...

JS数组的详解与使用
什么是数组? 数组是一种有序的集合,有长度和索引,以及身上有许多的API方法 面试题:数组和伪数组的区别:数组和伪数组都有长度和索引,区别是数组身上有许多的API方法 而伪数组身上不存在这些API方法创建数组…...

c++ / python / java / PHP / SQL / Ruby / Objective-C / JavaScript 发展史
c发展史 C是由丹尼斯里奇和肯汤普森在1970年代早期开发的C语言的扩展。C最初被称为“C with Classes”,是在1980年代初期由比雅尼斯特劳斯特鲁普开发的。 1983年,斯特劳斯特鲁普将C with Classes重新命名为C。在1985年,C编译器的第一个版本被…...

Linux第一个小程序-进度条(缓冲区概念)
1.\r和\n C语言中有很多字符 a.可显字符 b.控制字符 对于回车其实有两个动作,首先换行,在将光标指向最左侧 \r :回车 \n:换行 下面举个例子: 把\n去掉会怎样 什么都没输出。为什么? 2.缓冲区概念 观察下两个…...

CentOS7环境安装tomcat
环境准备 由于是在练习,为了方便,我们可以 1.关闭防火墙 systemctl disable firewalld.service systemctl stop firewalld.service 2.关闭selinux 在/etc/selinux/config中,设置: SELINUXdisabled 3.准备jdk---》jdk-8u333-li…...

C# 中使用ValueTask优化异步方法
概要 我们在开发过程中,经常使用async的异步方法,但是有些时候,异步的方法中,可能包含一些同步的处理。本文主要介绍通过ValueTask这个struct,优化异步处理的方法性能。 代码及实现 有些时候我们会缓存一些数据在内…...

KVM创建新的虚拟机(图形化)
1.启动kvm管理器 [rootlocalhost ~]# virt-manager2.点击创建虚拟机 3.选择所需os安装镜像 4.选择合适的内存大小和CPU 5.创建所需磁盘 6.命名创建的虚拟机...

正则表达式在格式校验中的应用以及包装类的重要性
文章目录 正则表达式:做格式校验包装类:在基本数据类型与引用数据类型间的桥梁总结 在现代IT技术岗位的面试中,掌握正则表达式的应用以及理解包装类的重要性是非常有益的。这篇博客将围绕这两个主题展开,帮助读者更好地面对面试挑…...

Docker使用之java项目工程的部署
同样本文的基础建立在已在目标服务器(以linux为示例)上安装了docker,安装教程请移步度娘 若容器存在请先停止,在删除,然后删除镜像重新编译 //停止容器 sudo docker stop datatransfer//删除容器 sudo docker rm dat…...

3ds Max如何进行合成的反射光泽通道渲染
推荐: NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 准备场景 步骤 1 打开 3ds Max。smart_phone.max打开已 随教程提供。 打开 3ds Max 步骤 2 按 M 打开材质编辑器。选择空材料 槽。单击漫射通道。它将打开材质/贴图浏览器窗口。选择位图࿰…...

114、Spring AOP是如何实现的?它和AspectJ有什么区别?
Spring AOP是如何实现的?它和AspectJ有什么区别? 一、AOP的理解1、spring aop:动态代理实现2、spring aop 和 AspectJ的区别3、小图一、AOP的理解 其实,AOP只是一种编程思想,表示面向切面编程,如果想实现这种思想,可以使用动态代理啊,第三方的框架 AspectJ啊等等。 1…...

正则表达式速通
简介 正则表达式,我们可以看作通配符的增强版,可以帮我们匹配指定规则的字符串,在计算机中应用广泛,比如说爬虫、网站的登录表单等。 原视频:https://www.bilibili.com/video/BV1da4y1p7iZ 学习正则表达式的常用工具…...

数据可视化(5)热力图及箱型图
1.热力图 #基本热力图 #imshow(x) #x,数据 x[[1,2],[3,4],[5,6],[7,8],[9,10]] plt.imshow(x) plt.show() #使用热力图分析学生的成绩 dfpd.read_excel(学生成绩表.xlsx) #:表示行号 截取数学到英语的列数 xdf.loc[:,"数学":英语].…...

React 组件通信-全面解析
父子组件通信 // 导入 import { useState } from "react";import "./App.scss"; import { defaultTodos } from "./components/module/contentData";// 子组件 const Module ({ id, done, text, onToggle, onDelData }) > {return (<div…...

“深入理解Spring Boot:快速构建微服务架构的利器“
标题:深入理解Spring Boot:快速构建微服务架构的利器 摘要:Spring Boot是一种基于Spring框架的开源项目,它通过自动化配置和约定优于配置的原则,使得开发者能够快速构建微服务架构。本文将深入介绍Spring Boot的特点和…...

SpringBoot超级详解
1.父工程的父工程 在父工程的父工程中的核心依赖,专门用来版本管理的 版本管理。 2.父工程 资源过滤问题,都帮解决了,什么配置文件,都已经配置好了,资源过滤问题是帮助,过滤解决让静态资源文件能够过滤到…...

手机的python怎么运行文件,python在手机上怎么运行
大家好,小编来为大家解答以下问题,手机上的python怎么运行程序,手机的python怎么运行文件,今天让我们一起来看看吧! 1、python程序怎么在手机上运行 python语言应用很广泛,自己也很喜欢使用它,其…...

RBAC三级树状菜单实现(从前端到后端)未完待续
1、表格设计 RBAC 2、前端路由 根据不同的用户id显示不同的菜单。 根据路由 3、多级菜单 展示所有权限,并且根据当前用户id展示它所属的角色的所有菜单。 前端树状展示 思路: 后端:传给前端map,map里1个是所有菜单&am…...

牛客网Verilog刷题——VL41
牛客网Verilog刷题——VL41 题目答案 题目 请设计一个可以实现任意小数分频的时钟分频器,比如说8.7分频的时钟信号,注意rst为低电平复位。提示:其实本质上是一个简单的数学问题,即如何使用最小公倍数得到时钟周期的分别频比。设小…...