Python实现猫狗分类
不废话了,直接上代码:
def load_imagepath_from_csv(csv_name):image_path = []with open(csv_name,'r') as file:csv_reader = csv.reader(file)next(csv_reader)for row in csv_reader:image_path.append(row[0])return image_pathimport csv
csv_name = "submission_demo.csv" #文件名仅供参考
image_path_list = load_imagepath_from_csv(csv_name)image_path_listfrom MMEdu import MMClassification as cls
import os
import csv
import numpy as np
rootpath = "test_image" #文件名仅供参考
csv_name = "submission_demo.csv" #文件名仅供参考
image_path_list = load_imagepath_from_csv(csv_name)
model = cls(backbone='MobileNet') #MobileNet也可以换成LeNet,ResNet18,ResNet50,RandForest等
checkpoint = 'checkpoints/cls_model/catsdogs_mobilenet_continue/best_accuracy_top-1_epoch_2.pth' #文件名仅供参考
predictions = []
for image_name in image_path_list:image_path = rootpath+'/'+image_namey_test_pred = model.inference(image=image_path, show=False, checkpoint=checkpoint, device='cpu')y_test_pred = model.print_result(y_test_pred)predictions.append(y_test_pred)predictionsimport csv
result_csv_path = 'inference_result/results1.csv'
with open(result_csv_path,"w",newline='') as csvfile:csv_writer = csv.writer(csvfile)csv_writer.writerow([f'filename','prediction','pre_class'])for index.image_name in enumerate(image_path_list):csv_writer.writerow([image_name,predictions[index][0]['标签'],predictions[index][0]['预测结果']])csvfile.close()import pandas as pd
df = pd.read_csv(result_csv_path, header=None)
df
下面是数据集(你也可以自己去网上搜图片):

这仅仅是MMEdu在图像分类上的一小部分作用,其他功能待大家发现!
本文内容为小编自己汇总,内容可能会有错误或疏漏,感谢大家的提议!
记得点赞和关注哦~
相关文章:
Python实现猫狗分类
不废话了,直接上代码: def load_imagepath_from_csv(csv_name):image_path []with open(csv_name,r) as file:csv_reader csv.reader(file)next(csv_reader)for row in csv_reader:image_path.append(row[0])return image_pathimport csv csv_name &…...
pjsip、pjsua2+bcg729 windows下编译java版本
文章目录 简要说明流程步骤 简要说明 基本参考的这里 https://docs.pjsip.org/en/latest/get-started/windows/build_instructions.html#building-the-projects 我这里主要是为了生成pjsua2.dll 用于在java下调用。 其中 libbcg729.dll 是通过vcpkg来进行安装。 pjsip使用vs2…...
尝试多数据表 sqlite
C 唯一值得骄傲的地方就是 通过指针来回寻址 😂 提高使用的灵活性 小脚本buff 加成...
Keil出现Flash Timeout.Reset the Target and try it again.我有一种解决方法
2.解决方法 网上查找了找原因,是因为之前代码设置了读保护功能。 读保护即大家通常说的“加密”,是作用于整个Flash存储区域。一旦设置了Flash的读保护,内置的Flash存储区只能通过程序的正常执行才能读出,而不能通过下述任何一种…...
纯粹即刻,畅享音乐搜索的轻松体验
纯粹即刻,畅享音乐搜索的轻松体验 在当今快节奏的生活中,我们常常渴望一种简单而便捷的方式来探索和享受音乐。现在,你可以纯粹即刻地畅享音乐搜索的轻松体验。无论你是寻找热门歌曲还是探索不同风格的音乐,这款应用将为你带来随…...
动态规划之树形DP
动态规划之树形DP 树形DP何为树形DP 树形DP例题HDU-1520 Anniversary partyHDU-2196 Computer834. 树中距离之和 树形DP 何为树形DP 树形DP是指在“树”这种数据结构上进行的动态规划:给出一颗树,要求以最少的代价(或取得最大收益ÿ…...
嵌入式_GD32使用宏开关进行Debug串口打印调试
嵌入式_GD32使用宏开关进行Debug串口打印调试 串口Debug是一种将数据通过串口发送的方法。通过使用printf函数,我们可以将需要发送的数据格式化为字符串,并通过串口发送出去。在C语言中,通常使用串口发送数据的函数为printf函数,…...
使用 GitHub Copilot 进行 Prompt Engineering 的初学者指南(译)
文章目录 什么是 GitHub Copilot ?GitHub Copilot 可以自己编码吗?GitHub Copilot 的底层是如何工作的?什么是 prompt engineering?这是 prompt engineering 的另一个例子 使用 GitHub Copilot 进行 prompt engineering 的最佳实践提供高级上下文&…...
c++开发模式,享元模式
享元模式,个人理解,就是应用共享技术来减少类的对象创建,节省计算机资源消耗,而且能够减少维护成本 #include <iostream> #include <string> #include <vector>using namespace std;class Flyweight { public:…...
LLM大模型——langchain相关知识总结
目录 一、简介LangChain的主要价值支柱简单安装 二、 LangChain的主要模块1.Model I/Oprompt模版定义调用语言模型 2. 数据连接3. chains4. Agents5. MemoryCallbacks 三、其他记录多进程调用 主要参考以下开源文档 文档地址:https://python.langchain.com/en/lates…...
【Python】数据可视化利器PyCharts在测试工作中的应用
目录 PyCharts 简介 PyCharts 的安装 缺陷统计 测试用例执行情况 使用JavaScript情况 缺陷趋势分析 将两张图放在一个组合里(grid) 将两张图重叠成一张图(overlap) 将多张图组合在一个page 中(page࿰…...
AOP的实战(统一功能处理模块)
一、用户登录权限效验 用户登录权限的发展从之前每个方法中自己验证用户登录权限,到现在统一的用户登录验证处理,它是一个逐渐完善和逐渐优化的过程。 1.1 最初用户登录验证 我们先来回顾一下最初用户登录验证的实现方法: RestController…...
时间复杂度为O(n2)的三种简单排序算法
1.冒泡排序 冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。 /*** …...
LeetCode 热题 100 JavaScript --226. 翻转二叉树
给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 3: 输入:root [] 输出:[] 提示: 树中节点数目范围在 [0, 100] 内 -100 < Node.val < 100 var invertTree function(root…...
hive所有窗口函数详情总结
hive窗口函数详情总结 解释语法hive开窗函数排序开窗函数样例数据RANK()DENSE_RANK()ROW_NUMBER() 分析开窗函数样例数据:last_valuefirst_valuelaglead 其他窗口函数cume_distpercent_rank 解释 开窗函数用于为行定义一个窗口(指运算将要操作的行的集合…...
Talk | 新加坡国立大学博士生施宇钧:DragDiffusion-基于扩散模型的关键点拖拽图片编辑
本期为TechBeat人工智能社区第518期线上Talk! 北京时间8月2日(周三)20:00, 新加坡国立大学博士生—施宇钧的Talk已准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “DragDiffusion-基于扩散模型的关键点拖拽图片编辑”,他…...
22 | 贝叶斯分类算法
文章目录 介绍什么是贝叶斯分类算法?贝叶斯分类算法的应用场景贝叶斯定理贝叶斯定理的基本原理贝叶斯定理的公式推导贝叶斯定理的应用举例代码介绍 什么是贝叶斯分类算法? 贝叶斯分类算法是一类基于贝叶斯定理的分类技术。在统计分类任务中,这些算法使用特定的假设来建立特…...
java.sql.SQLSyntaxErrorException: ORA-00909: 参数个数无效
问题: 在Select里采用Contact(%,#name,%)报错参数个数无效 原因: 回想以前用Mysql的时候就是这样用的,没有问题,在这里就出问题了,所以确定问题在oracle数据库上,经过查询得知,oracle和mysql…...
数据结构8-哈希表
数据结构8-哈希表 动态分配内存方式: #include <stdio.h> #include <stdlib.h>#define SIZE 20struct DataItem {int data; int key; };struct DataItem* hashArray[SIZE]; struct DataItem* dummyItem; struct DataItem* item;//获取键值 int has…...
vue3引用Font-Awesome字体图标库
环境:vue3tsviteelement plus 介绍:这里安装引用的是Font-Awesome 6.x 版本,有专业版(付费),这里只介绍免费版字体使用方法 一、安装 1.使用npm安装,终端打开项目目录或者命令行cd到目录文件夹…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
