Python实现猫狗分类
不废话了,直接上代码:
def load_imagepath_from_csv(csv_name):image_path = []with open(csv_name,'r') as file:csv_reader = csv.reader(file)next(csv_reader)for row in csv_reader:image_path.append(row[0])return image_pathimport csv
csv_name = "submission_demo.csv" #文件名仅供参考
image_path_list = load_imagepath_from_csv(csv_name)image_path_listfrom MMEdu import MMClassification as cls
import os
import csv
import numpy as np
rootpath = "test_image" #文件名仅供参考
csv_name = "submission_demo.csv" #文件名仅供参考
image_path_list = load_imagepath_from_csv(csv_name)
model = cls(backbone='MobileNet') #MobileNet也可以换成LeNet,ResNet18,ResNet50,RandForest等
checkpoint = 'checkpoints/cls_model/catsdogs_mobilenet_continue/best_accuracy_top-1_epoch_2.pth' #文件名仅供参考
predictions = []
for image_name in image_path_list:image_path = rootpath+'/'+image_namey_test_pred = model.inference(image=image_path, show=False, checkpoint=checkpoint, device='cpu')y_test_pred = model.print_result(y_test_pred)predictions.append(y_test_pred)predictionsimport csv
result_csv_path = 'inference_result/results1.csv'
with open(result_csv_path,"w",newline='') as csvfile:csv_writer = csv.writer(csvfile)csv_writer.writerow([f'filename','prediction','pre_class'])for index.image_name in enumerate(image_path_list):csv_writer.writerow([image_name,predictions[index][0]['标签'],predictions[index][0]['预测结果']])csvfile.close()import pandas as pd
df = pd.read_csv(result_csv_path, header=None)
df
下面是数据集(你也可以自己去网上搜图片):
这仅仅是MMEdu在图像分类上的一小部分作用,其他功能待大家发现!
本文内容为小编自己汇总,内容可能会有错误或疏漏,感谢大家的提议!
记得点赞和关注哦~
相关文章:

Python实现猫狗分类
不废话了,直接上代码: def load_imagepath_from_csv(csv_name):image_path []with open(csv_name,r) as file:csv_reader csv.reader(file)next(csv_reader)for row in csv_reader:image_path.append(row[0])return image_pathimport csv csv_name &…...

pjsip、pjsua2+bcg729 windows下编译java版本
文章目录 简要说明流程步骤 简要说明 基本参考的这里 https://docs.pjsip.org/en/latest/get-started/windows/build_instructions.html#building-the-projects 我这里主要是为了生成pjsua2.dll 用于在java下调用。 其中 libbcg729.dll 是通过vcpkg来进行安装。 pjsip使用vs2…...

尝试多数据表 sqlite
C 唯一值得骄傲的地方就是 通过指针来回寻址 😂 提高使用的灵活性 小脚本buff 加成...

Keil出现Flash Timeout.Reset the Target and try it again.我有一种解决方法
2.解决方法 网上查找了找原因,是因为之前代码设置了读保护功能。 读保护即大家通常说的“加密”,是作用于整个Flash存储区域。一旦设置了Flash的读保护,内置的Flash存储区只能通过程序的正常执行才能读出,而不能通过下述任何一种…...

纯粹即刻,畅享音乐搜索的轻松体验
纯粹即刻,畅享音乐搜索的轻松体验 在当今快节奏的生活中,我们常常渴望一种简单而便捷的方式来探索和享受音乐。现在,你可以纯粹即刻地畅享音乐搜索的轻松体验。无论你是寻找热门歌曲还是探索不同风格的音乐,这款应用将为你带来随…...

动态规划之树形DP
动态规划之树形DP 树形DP何为树形DP 树形DP例题HDU-1520 Anniversary partyHDU-2196 Computer834. 树中距离之和 树形DP 何为树形DP 树形DP是指在“树”这种数据结构上进行的动态规划:给出一颗树,要求以最少的代价(或取得最大收益ÿ…...
嵌入式_GD32使用宏开关进行Debug串口打印调试
嵌入式_GD32使用宏开关进行Debug串口打印调试 串口Debug是一种将数据通过串口发送的方法。通过使用printf函数,我们可以将需要发送的数据格式化为字符串,并通过串口发送出去。在C语言中,通常使用串口发送数据的函数为printf函数,…...

使用 GitHub Copilot 进行 Prompt Engineering 的初学者指南(译)
文章目录 什么是 GitHub Copilot ?GitHub Copilot 可以自己编码吗?GitHub Copilot 的底层是如何工作的?什么是 prompt engineering?这是 prompt engineering 的另一个例子 使用 GitHub Copilot 进行 prompt engineering 的最佳实践提供高级上下文&…...
c++开发模式,享元模式
享元模式,个人理解,就是应用共享技术来减少类的对象创建,节省计算机资源消耗,而且能够减少维护成本 #include <iostream> #include <string> #include <vector>using namespace std;class Flyweight { public:…...

LLM大模型——langchain相关知识总结
目录 一、简介LangChain的主要价值支柱简单安装 二、 LangChain的主要模块1.Model I/Oprompt模版定义调用语言模型 2. 数据连接3. chains4. Agents5. MemoryCallbacks 三、其他记录多进程调用 主要参考以下开源文档 文档地址:https://python.langchain.com/en/lates…...

【Python】数据可视化利器PyCharts在测试工作中的应用
目录 PyCharts 简介 PyCharts 的安装 缺陷统计 测试用例执行情况 使用JavaScript情况 缺陷趋势分析 将两张图放在一个组合里(grid) 将两张图重叠成一张图(overlap) 将多张图组合在一个page 中(page࿰…...

AOP的实战(统一功能处理模块)
一、用户登录权限效验 用户登录权限的发展从之前每个方法中自己验证用户登录权限,到现在统一的用户登录验证处理,它是一个逐渐完善和逐渐优化的过程。 1.1 最初用户登录验证 我们先来回顾一下最初用户登录验证的实现方法: RestController…...

时间复杂度为O(n2)的三种简单排序算法
1.冒泡排序 冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。 /*** …...

LeetCode 热题 100 JavaScript --226. 翻转二叉树
给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 3: 输入:root [] 输出:[] 提示: 树中节点数目范围在 [0, 100] 内 -100 < Node.val < 100 var invertTree function(root…...
hive所有窗口函数详情总结
hive窗口函数详情总结 解释语法hive开窗函数排序开窗函数样例数据RANK()DENSE_RANK()ROW_NUMBER() 分析开窗函数样例数据:last_valuefirst_valuelaglead 其他窗口函数cume_distpercent_rank 解释 开窗函数用于为行定义一个窗口(指运算将要操作的行的集合…...

Talk | 新加坡国立大学博士生施宇钧:DragDiffusion-基于扩散模型的关键点拖拽图片编辑
本期为TechBeat人工智能社区第518期线上Talk! 北京时间8月2日(周三)20:00, 新加坡国立大学博士生—施宇钧的Talk已准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “DragDiffusion-基于扩散模型的关键点拖拽图片编辑”,他…...
22 | 贝叶斯分类算法
文章目录 介绍什么是贝叶斯分类算法?贝叶斯分类算法的应用场景贝叶斯定理贝叶斯定理的基本原理贝叶斯定理的公式推导贝叶斯定理的应用举例代码介绍 什么是贝叶斯分类算法? 贝叶斯分类算法是一类基于贝叶斯定理的分类技术。在统计分类任务中,这些算法使用特定的假设来建立特…...
java.sql.SQLSyntaxErrorException: ORA-00909: 参数个数无效
问题: 在Select里采用Contact(%,#name,%)报错参数个数无效 原因: 回想以前用Mysql的时候就是这样用的,没有问题,在这里就出问题了,所以确定问题在oracle数据库上,经过查询得知,oracle和mysql…...
数据结构8-哈希表
数据结构8-哈希表 动态分配内存方式: #include <stdio.h> #include <stdlib.h>#define SIZE 20struct DataItem {int data; int key; };struct DataItem* hashArray[SIZE]; struct DataItem* dummyItem; struct DataItem* item;//获取键值 int has…...

vue3引用Font-Awesome字体图标库
环境:vue3tsviteelement plus 介绍:这里安装引用的是Font-Awesome 6.x 版本,有专业版(付费),这里只介绍免费版字体使用方法 一、安装 1.使用npm安装,终端打开项目目录或者命令行cd到目录文件夹…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...