当前位置: 首页 > news >正文

重测序数据分析流程丨操作步骤与代码与代码脚本

群体重测序数据分析笔记

在生物信息学中,群体重测序数据的挖掘和分析对于理解生物的进化、自然选择以及功能基因的定位等研究具有重要的意义。今天分享的笔记内容是群体遗传学相关的知识点,下面将一步步介绍整个重测序分析的流程和方法。

分析常用流程和方法简述

常用的重测序分析流程一般包含以下步骤:

  1. 质控和数据准备

这一步包括对原始测序数据进行质量评估和控制,以及数据格式的转换,常用流程包括测序数据的质控(QC)、比对、标记重复、排序、建立索引和变异检测。常用的软件工具包括FastQC、BWA、SAMtools、Picard和GATK等。

首先,我们需要进行质量控制,确保我们的数据是准确可靠的。常用的质量控制工具有FastQCTrimmomatic。以下是用Trimmomatic进行质量控制的例子:

java -jar trimmomatic.jar PE -phred33 \
input_forward.fq.gz input_reverse.fq.gz \
output_forward_paired.fq.gz output_forward_unpaired.fq.gz \
output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz \
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 \
SLIDINGWINDOW:4:15 MINLEN:36
  1. 序列比对

将处理好的数据比对到参考基因组上,得到比对结果,比对可以使用BWA这个工具。以下是比对命令的示例:

# 建立参考基因组索引
bwa index ref.fa
# 比对
bwa mem ref.fa read1.fq read2.fq > aln.sam
  1. 变异检测

根据比对结果,检测和分析基因序列中的变异,变异检测通常使用SAMtoolsBCFtools。以下是如何使用这些工具进行变异检测的示例:

# 转换格式
samtools view -S -b aln.sam > aln.bam
# 排序
samtools sort aln.bam -o aln_sorted.bam
# 检测变异
samtools mpileup -uf ref.fa aln_sorted.bam | bcftools call -cv - > var.raw.vcf
  1. 变异注释和分析

对检测到的变异进行注释和深度分析,包括群体结构分析、选择性消除分析、全基因组关联分析等。

以下为流程简单示意

# 质量控制
fastqc raw_data.fq
# 比对
bwa mem reference.fa raw_data.fq > aln.sam
# 标记重复
picard MarkDuplicates I=aln.sam O=marked.bam M=metrics.txt
# 排序
samtools sort -O bam -o sorted.bam -T temp.prefix marked.bam
# 建立索引
samtools index sorted.bam
# 变异检测
gatk HaplotypeCaller -R reference.fa -I sorted.bam -O variants.vcf

上游分析变异检测方法代码

在进行测序数据序列文件上游变异检测时,我们通常使用如GATK工具。以下是一段使用GATK进行SNP和Indel检测的代码:

# SNP检测
gatk --java-options "-Xmx4g" \
HaplotypeCaller  -R reference.fa \
-I sorted.bam \
-O raw_snps.vcf
# Indel检测
gatk --java-options "-Xmx4g" \
HaplotypeCaller  -R reference.fa \
-I sorted.bam --ploidy 2 \
--genotyping-mode DISCOVERY \
-stand_emit_conf 10 \
-stand_call_conf 30 \
-O raw_indels.vcf

群体结构分析方法

对于群体结构的分析,我们通常会使用程序如PLINK和ADMIXTURE。PLINK可以用于生成适合ADMIXTURE分析的数据,而ADMIXTURE可以进行群体结构分析。

# PLINK生成适用于ADMIXTURE的数据
plink --file input_data \
      --make-bed --out plink_output
# ADMIXTURE进行群体结构分析
admixture --cv plink_output.bed K

变异位点选择性消除分析

在基因组变异位点选择性消除分析中,我们可以使用vcftoolsR等工具来评估基因位点多态性和选择分化差异。以下是具体的操作:

# 使用vcftools计算窗口内的多态性
vcftools --vcf var.raw.vcf --window-pi 50000

# 在R中进行选择分化差异判断
# 以下是示例代码,具体代码需要根据实际情况编写
library(ape)
data <- read.table("fst.txt", header = T)
fst <- data$V4
sig_level <- qnorm(1 - 0.05 / 2) / sqrt(2)
outliers <- which(fst > sig_level)

GWAS全基因组关联分析

GWAS全基因组关联分析我们可以使用GAPIT包进行分析。以下是用R语言进行GWAS全基因组关联分析的示例代码:

library(GAPIT)
genotype_file <- "genotype.hmp.txt"
phenotype_file <- "phenotype.txt"
GAPIT_data <- GAPIT.Data(fileHapmap = genotype_file,
                         filePhenotype = phenotype_file)
GAPIT_GLM <- GAPIT.GLM(GAPIT_data)
GAPIT_MLM <- GAPIT.MLM(GAPIT_data)

PCA分析与进化树绘制

我们可以使用plinkgcta进行PCA分析,并使用ggtree进行群体结构进化树的绘制。以下是具体的操作:

# 使用plink和gcta进行PCA分析
plink --bfile plink --make-grm-bin --out plink
gcta --grm-bin plink --pca 10 --out plink

# 在R中使用ggtree绘制进化树
# 以下是示例代码,具体代码需要根据实际情况编写
library(ggtree)
tree <- read.tree("tree.nwk")
ggtree(tree) + geom_tiplab()

从vcf文件中挖掘显著变异位点的频率变化信息

我们可以使用vcftools工具从vcf文件中挖掘显著变异位点的频率变化信息,以下是具体的操作:

vcftools --vcf var.raw.vcf --freq --out freq

以上就是群体重测序数据的挖掘与分析的整个过程,每一步都需要我们仔细和认真的处理。


总结

以下是一个简单的bash脚本,实现对多个样品的批量重测序分析,这个脚本使用了一个循环来处理每一个样品。请注意这只是一个示例脚本,您可能需要根据实际情况对其进行修改或优化。

#!/bin/bash

# 路径参数
REF_GENOME_PATH=/path/to/your/reference/genome
SAMPLE_LIST=/path/to/your/sample/list
SAMPLE_PATH=/path/to/your/sample/data
WORKING_DIR=/path/to/your/working/directory

# 创建工作目录
mkdir -p ${WORKING_DIR}

# 循环处理每一个样品
while read SAMPLE; do
    echo "Processing sample ${SAMPLE}..."

    # 1. 质控和数据准备
    java -jar trimmomatic.jar PE -phred33 \
        ${SAMPLE_PATH}/${SAMPLE}_1.fq.gz \
        ${SAMPLE_PATH}/${SAMPLE}_2.fq.gz \
        ${WORKING_DIR}/${SAMPLE}_1_paired.fq.gz \
        ${WORKING_DIR}/${SAMPLE}_1_unpaired.fq.gz \
        ${WORKING_DIR}/${SAMPLE}_2_paired.fq.gz \
        ${WORKING_DIR}/${SAMPLE}_2_unpaired.fq.gz \
        ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

    # 2. 序列比对
    bwa mem ${REF_GENOME_PATH} \
        ${WORKING_DIR}/${SAMPLE}_1_paired.fq.gz \
        ${WORKING_DIR}/${SAMPLE}_2_paired.fq.gz > ${WORKING_DIR}/${SAMPLE}.sam

    # 3. 变异检测
    samtools view -S -b ${WORKING_DIR}/${SAMPLE}.sam > ${WORKING_DIR}/${SAMPLE}.bam
    samtools sort ${WORKING_DIR}/${SAMPLE}.bam -o ${WORKING_DIR}/${SAMPLE}_sorted.bam
    samtools mpileup -uf ${REF_GENOME_PATH} ${WORKING_DIR}/${SAMPLE}_sorted.bam | bcftools call -cv - > ${WORKING_DIR}/${SAMPLE}_var.raw.vcf

    # 4. 提取VCF文件中的频率信息
    vcftools --vcf ${WORKING_DIR}/${SAMPLE}_var.raw.vcf --freq --out ${WORKING_DIR}/${SAMPLE}_freq

    echo "Finished processing sample ${SAMPLE}."

done < ${SAMPLE_LIST}

在这个脚本中,我们假设有一个文本文件 ${SAMPLE_LIST} 包含所有待处理的样品名称,每个样品对应一对fastq.gz文件,文件名分别为 ${SAMPLE}_1.fq.gz${SAMPLE}_2.fq.gz。所有这些文件都存储在 ${SAMPLE_PATH} 路径下。处理过程中的中间文件和结果文件都会存储在 ${WORKING_DIR} 路径下。


使用这个脚本之前,你需要修改上面的四个路径参数,使它们指向实际的路径。另外,这个脚本只执行了一部分的分析步骤,如果你需要执行更多的步骤,你可以在脚本中添加相应的命令。

本文由 mdnice 多平台发布

相关文章:

重测序数据分析流程丨操作步骤与代码与代码脚本

群体重测序数据分析笔记 在生物信息学中&#xff0c;群体重测序数据的挖掘和分析对于理解生物的进化、自然选择以及功能基因的定位等研究具有重要的意义。今天分享的笔记内容是群体遗传学相关的知识点&#xff0c;下面将一步步介绍整个重测序分析的流程和方法。 分析常用流程和…...

npm -v无法显示版本号

情况&#xff1a; 删除C盘下.npmrc文件后解决。路径 C:\Users\Dell 记录一下这个解法。...

【Vue】父子组件值及方法传递使用

父子组件值、方法引用 1、值 1.1 父组件获取子组件值 父组件 <template><div><button click"getChildValue">click</button><child ref"child"></child></div> </template><script> import Child…...

医药化工企业洁净厂房改造消防防爆安全的重要性

设计 【摘要】&#xff1a;近年来&#xff0c;我国医药化工企业规模不断扩大。医药化工企业的情况复杂&#xff0c;稍有不慎将发生火灾或者爆炸&#xff0c;对人员生命以及财产安全造成巨大的损害&#xff0c;酿成悲剧。所以&#xff0c;“三同时”原则的落实&#xff0c;如何…...

Web开发中防止SQL注入

一、SQL注入简介 SQL注入是比较常见的网络攻击方式之一&#xff0c;它不是利用操作系统的BUG来实现攻击&#xff0c;而是针对程序员编写时的疏忽&#xff0c;通过SQL语句&#xff0c;实现无账号登录&#xff0c;甚至篡改数据库。 二、SQL注入攻击的总体思路 1.寻找到SQL注入…...

【LeetCode-中等】剑指 Offer 35. 复杂链表的复制(详解)

目录 题目 方法1&#xff1a;错误的方法&#xff08;初尝试&#xff09; 方法2&#xff1a;复制、拆开 方法3&#xff1a;哈希表 总结 题目 请实现 copyRandomList 函数&#xff0c;复制一个复杂链表。在复杂链表中&#xff0c;每个节点除了有一个 next 指针指向下一个节…...

QT图形视图系统 - 使用一个项目来学习QT的图形视图框架 -第一篇

文章目录 QT图形视图系统介绍开始搭建MainWindow框架设置scene的属性缩放功能的添加加上标尺 QT图形视图系统 介绍 详细的介绍可以看QT的官方助手&#xff0c;那里面介绍的详细且明白&#xff0c;需要一定的英语基础&#xff0c;我这里直接使用一个开源项目来介绍QGraphicsVi…...

Cat.1如何成为物联网业务加速器?

随着Cat.1芯片及模组在功耗和成本上的不断优化&#xff0c;在窄带物联网领域&#xff0c;越来越多的终端客户把Cat.1当做与NB-IoT相比较的第二选择。越来越多的表计、烟感、市政等行业终端将Cat.1模组应用于非集中化部署的上报类终端业务中&#xff0c;Cat.1这只“网红猫”仍保…...

Qt应用开发(基础篇)——布局管理 Layout Management

目录 一、前言 二&#xff1a;相关类 三、水平、垂直、网格和表单布局 四、尺寸策略 一、前言 在实际项目开发中&#xff0c;经常需要使用到布局&#xff0c;让控件自动排列&#xff0c;不仅节省控件还易于管控。Qt布局系统提供了一种简单而强大的方式来自动布局小部件中的…...

Python web实战之 Django 的 ORM 框架详解

本文关键词&#xff1a;Python、Django、ORM。 概要 在 Python Web 开发中&#xff0c;ORM&#xff08;Object-Relational Mapping&#xff0c;对象关系映射&#xff09;是一个非常重要的概念。ORM 框架可以让我们不用编写 SQL 语句&#xff0c;就能够使用对象的方式来操作数据…...

pycharm制作柱状图

Bar - Bar_rotate_xaxis_label 解决标签名字过长的问题 from pyecharts import options as opts from pyecharts.charts import Barc (Bar().add_xaxis(["高等数学1&#xff0c;2","C语言程序设计","python程序设计","大数据导论",…...

静态资源导入探究

静态资源可以在哪里找呢&#xff1f;我们看看源码 从这个类进去 里面有个静态类 WebMvcAutoConfigurationAdapter 有个配置类&#xff0c;将这个类的对象创建并导入IOC容器里 这个静态类下有个方法 addResourceHandlers(ResourceHandlerRegistry registry)静态资源处理器 若自…...

安全狗V3.512048版本绕过

安全狗安装 安全狗详细安装、遇见无此服务器解决、在windows中命令提示符中进入查看指定文件夹手动启动Apache_安全狗只支持 glibc_2.14 但是服务器是2.17_黑色地带(崛起)的博客-CSDN博客 安全狗 safedogwzApacheV3.5.exe 右键电脑右下角安全狗图标-->选择插件-->安装…...

prometheus监控k8s kube-proxy target down

prometheus kube-proxy target down 解决 修改配置 kubectl edit cm/kube-proxy -n kube-systemmetricsBindAddress: "0.0.0.0:10249"删除 kube-proxy pod 使之重启应用配置 kubectl delete pod --force `kubectl get pod -n kube-system |grep kube-proxy|awk {pr…...

SPSS数据分析--假设检验的两种原假设取舍决定方式

假设检验的两种原假设取舍决定方式 在t检验&#xff0c;相关分析&#xff0c;回归分析&#xff0c;方差分析&#xff0c;卡方检验等等分析方法中&#xff0c;都需要用到假设检验。假设检验的步骤一般如下&#xff1a; 提出假设&#xff1a;H0 vs H1 ;假设原假设H0 成立的情况…...

Python实现猫狗分类

不废话了&#xff0c;直接上代码&#xff1a; def load_imagepath_from_csv(csv_name):image_path []with open(csv_name,r) as file:csv_reader csv.reader(file)next(csv_reader)for row in csv_reader:image_path.append(row[0])return image_pathimport csv csv_name &…...

pjsip、pjsua2+bcg729 windows下编译java版本

文章目录 简要说明流程步骤 简要说明 基本参考的这里 https://docs.pjsip.org/en/latest/get-started/windows/build_instructions.html#building-the-projects 我这里主要是为了生成pjsua2.dll 用于在java下调用。 其中 libbcg729.dll 是通过vcpkg来进行安装。 pjsip使用vs2…...

尝试多数据表 sqlite

C 唯一值得骄傲的地方就是 通过指针来回寻址 &#x1f602; 提高使用的灵活性 小脚本buff 加成...

Keil出现Flash Timeout.Reset the Target and try it again.我有一种解决方法

2.解决方法 网上查找了找原因&#xff0c;是因为之前代码设置了读保护功能。 读保护即大家通常说的“加密”&#xff0c;是作用于整个Flash存储区域。一旦设置了Flash的读保护&#xff0c;内置的Flash存储区只能通过程序的正常执行才能读出&#xff0c;而不能通过下述任何一种…...

纯粹即刻,畅享音乐搜索的轻松体验

纯粹即刻&#xff0c;畅享音乐搜索的轻松体验 在当今快节奏的生活中&#xff0c;我们常常渴望一种简单而便捷的方式来探索和享受音乐。现在&#xff0c;你可以纯粹即刻地畅享音乐搜索的轻松体验。无论你是寻找热门歌曲还是探索不同风格的音乐&#xff0c;这款应用将为你带来随…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

初学 pytest 记录

安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

day36-多路IO复用

一、基本概念 &#xff08;服务器多客户端模型&#xff09; 定义&#xff1a;单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用&#xff1a;应用程序通常需要处理来自多条事件流中的事件&#xff0c;比如我现在用的电脑&#xff0c;需要同时处理键盘鼠标…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...