当前位置: 首页 > news >正文

7_分类算法—逻辑回归

文章目录

  • 逻辑回归:
  • 1 Logistic回归(二分类问题)
    • 1.1 sigmoid函数
    • 1.2 Logistic回归及似然函数(求解)
    • 1.3 θ参数求解
    • 1.4 Logistic回归损失函数
    • 1.5 LogisticRegression总结
  • 2 Softmax回归(多分类问题)
    • 2.1 Softmax算法原理
    • 2.2 Softmax算法损失函数
    • 2.3 Softmax算法梯度下降法求解
  • 3 总结

逻辑回归:

  • 线性回归的式子作为输入
  • 判断某一类别的概率(根据数据大小作出判断)
  • 应用场景:二分类问题(哪一个类别少,判定的概率值是指的这个类别。)
  • 返回的是概率值

1 Logistic回归(二分类问题)

在这里插入图片描述
在这里插入图片描述

输出:[0,1]区间的概率值,默认0.5作为阀值

1.1 sigmoid函数

注:g(z)为sigmoid函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 Logistic回归及似然函数(求解)

在这里插入图片描述
在这里插入图片描述

1.3 θ参数求解

Logistic回归θ参数的求解过程为(类似梯度下降方法):

在这里插入图片描述

1.4 Logistic回归损失函数

与线性回归原理相同,但由于是分类问题,损失函数不一样,只能通过梯度下降求解

两种表示方式:

方法一:

在这里插入图片描述

方法二:(推荐)

在这里插入图片描述

1.5 LogisticRegression总结

  • 应用:广告点击率预测、电商购物搭配推荐
  • 优点:适合需要得到一个分类概率的场景
  • 缺点:当特征空间很大时,逻辑回归的性能不是很好(看硬件能力)

2 Softmax回归(多分类问题)

  • softmax回归是logistic回归的一般化,适用于K分类的问题,第k类的参数为向量θk,组成的二维矩阵为θk*n
  • softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。
  • softmax回归概率函数为:
    在这里插入图片描述

2.1 Softmax算法原理

在这里插入图片描述

2.2 Softmax算法损失函数

在这里插入图片描述

2.3 Softmax算法梯度下降法求解

在这里插入图片描述
在这里插入图片描述

3 总结

  • 线性模型一般用于回归问题,Logistic和Softmax模型一般用于分类问题
  • 求θ的主要方式是梯度下降算法,梯度下降算法是参数优化的重要手段,主要是SGD,适用于在线学习以及跳出局部极小值
  • Logistic/Softmax回归是实践中解决分类问题的最重要的方法
  • 广义线性模型对样本要求不必要服从正态分布、只需要服从指数分布簇(二项分布、泊松分布、伯努利分布、指数分布等)即可;广义线性模型的自变量可以是连续的也可以是离散的。

相关文章:

7_分类算法—逻辑回归

文章目录 逻辑回归:1 Logistic回归(二分类问题)1.1 sigmoid函数1.2 Logistic回归及似然函数(求解)1.3 θ参数求解1.4 Logistic回归损失函数1.5 LogisticRegression总结 2 Softmax回归(多分类问题&#xff0…...

【计算机网络】应用层协议 -- DNS协议

文章目录 1. DNS背景2. 域名简介3. 域名解析过程4. 使用dig查看DNS过程 1. DNS背景 DNS(Domain Name System,域名系统)协议,是一个用来将域名转化为IP地址的应用层协议。 TCP/IP当中通过IP地址和端口号的方式,来确定…...

ES6 - 数组新增的一些常用方法

文章目录 1,Array.from()2,Array.of()3,find(),findIndex(),findLast()和findLastIndex()4,Array.fill()5,keys(),values() 和 entries()6,Array.includes()7&#xff0c…...

【BEV感知】3-BEV开源数据集

3-BEV开源数据集 1 KITTI1.1 KITTI数据怎么采集?1.2 KITTI数据规模有多大?1.3 KITTI标注了哪些目标?1.4 转换矩阵1.5 标签文件 2 nuScenes2.1 nuScenes Vs KITTI2.2 标注文件 1 KITTI KITTI 1.1 KITTI数据怎么采集? 通过车载相机、激光雷达等传感器采集。 只提供了相机正…...

Kafka-Broker工作流程

kafka集群在启动时,会将每个broker节点注册到zookeeper中,每个broker节点都有一个controller,哪个controller先在zookeeper中注册,哪个controller就负责监听brokers节点变化,当有分区的leader挂掉时,contro…...

第八篇-Tesla P40+ChatGLM2+LoRA

部署环境 系统:CentOS-7CPU: 14C28T显卡:Tesla P40 24G驱动: 515CUDA: 11.7cuDNN: 8.9.2.26目的 验证P40部署可行性,只做验证学习lora方式微调创建环境 conda create --name glm-tuning python3.10 conda activate glm-tuning克隆项目 git clone http…...

调用feign返回错误的数据

bug描述&#xff1a; 在一个请求方法中会调用到feign去获取其他的数据。 List<Demo> list aaaFeignApi.getData(personSelectGetParam);在调用的时候&#xff0c;打断点到feign的地方&#xff0c;数据是存在的&#xff0c;并且有15条。但是返回到上面代码的时候数据就…...

【Spring】(二)从零开始的 Spring 项目搭建与使用

文章目录 前言一、Spring 项目的创建1.1 创建 Maven 项目1.2 添加 Spring 框架支持1.3 添加启动类 二、储存 Bean 对象2.1 创建 Bean2.1 将 Bean 注册到 Spring 容器 三、获取并使用 Bean 对象3.1 获取Spring 上下文3.2 ApplicationContext 和 BeanFactory 的区别3.3 获取指定的…...

redis五种数据类型介绍

、string&#xff08;字符串&#xff09; 它师最基本的类型&#xff0c;可以理解为Memcached一模一样的类型&#xff0c;一个key对应一个value。 注意&#xff1a;一个键最大能存储 512MB。 特性&#xff1a;可以包含任何数据,比如jpg图片或者序列化的对象,一个键最大能存储512…...

【JavaEE】Spring Boot - 项目的创建和使用

【JavaEE】Spring Boot 开发要点总结&#xff08;1&#xff09; 文章目录 【JavaEE】Spring Boot 开发要点总结&#xff08;1&#xff09;1. Spring Boot 的优点2. Spring Boot 项目创建2.1 下载安装插件2.2 创建项目过程2.3 加载项目2.4 启动项目2.5 删除一些没用的文件 3. Sp…...

Git reset、revert用法

reset reset是删除之前的提交记录&#xff0c;所有的提交点都会被清除&#xff0c;我们看下执行前后的git log区别 D:\workspace\android>git log commit 87c1277a57544c53c603b04110e3dde100da8f57 (HEAD -> develop_main) Author: test <test.com> Date: Wed…...

Redis-1

Redis 理论部分 redis 速度快的原因 1、纯内存操作 2、单线程操作&#xff0c;避免了频繁的上下文切换和资源争用问题&#xff0c;多线程需要占用更多的 CPU 资源 3、采用了非阻塞 I/O 多路复用机制 4、提供了非常高效的数据结构&#xff0c;例如双向链表、压缩页表和跳跃…...

【Linux】Linux服务器连接百度网盘:实现上传下载

【Linux】Linux服务器连接百度网盘&#xff1a;实现上传下载 文章目录 【Linux】Linux服务器连接百度网盘&#xff1a;实现上传下载1. 前言2. 具体过程2.1 pip 安装所需包2.2 认证&#xff08;第一次连接需要认证&#xff09;2.3 下载所需文件或者目录2.4 其他指令使用2.5 注意…...

ADC模拟看门狗

如果被ADC转换的模拟电压低于低阀值或高于高阀值&#xff0c;AWD模拟看门狗状态位被设置。阀值位 于ADC_HTR和ADC_LTR寄存器的最低12个有效位中。通过设置ADC_CR1寄存器的AWDIE位 以允许产生相应中断。通过以下函数可以进行配置 void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx…...

google谷歌gmail邮箱账号注册手机号无法进行验证怎么办?此电话号码无法用于进行验证 或 此电话号码验证次数太多

谷歌gmail邮箱账号注册手机号无法进行验证怎么办? 使用手机号码注册谷歌gmail邮箱账号时会遇到&#xff1a;此电话号码无法用于进行验证 或 此电话号码验证次数太多。造成注册google谷歌gmail邮箱账号受阻&#xff0c;无法正常完成注册。 谷歌Gmail邮箱账号正确的注册方法与教…...

Spring:IOC技术、Bean、DI

前言 Spring是一个开源的项目&#xff0c;并不是单单的一个技术&#xff0c;发展至今已形成一种开发生态圈。也就是说我们可以完全使用Spring技术完成整个项目的构建、设计与开发。Spring是一个基于IOC和AOP的架构多层j2ee系统的架构。 SpringFramework&#xff1a;Spring框架…...

目标检测与跟踪 (2)- YOLO V8配置与测试

系列文章目录 第一章 目标检测与跟踪 &#xff08;1&#xff09;- 机器人视觉与YOLO V8 目标检测与跟踪 &#xff08;1&#xff09;- 机器人视觉与YOLO V8_Techblog of HaoWANG的博客-CSDN博客3D物体实时检测、三维目标识别、6D位姿估计一直是机器人视觉领域的核心研究课题&a…...

【Leetcode】56.合并区间

一、题目 1、题目描述 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [ s t a r t i start_i start...

设置系统编码 Beta

在yolov5环境搭建过程中会遇到如下的编码错误警告&#xff1a; 这时&#xff0c;按住“ctrlc”中止进程&#xff0c;然后设置系统编码&#xff1a; 电脑右键属性打开&#xff1a; 重启之后等安装好了&#xff0c;记得回去把bae键取消。...

phpunit

composer地址&#xff1a;phpunit/phpunit - Packagist 官方文档:PHPUnit文档 – PHP测试框架 PHPUnit是一个框架&#xff0c;最为hyperf学习的补充学习&#xff0c;就不写这么细了。 估计写下安装和使用&#xff0c;具体学习内容看文档。 一、安装 需安装扩展&#xff1a;…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...