当前位置: 首页 > news >正文

pyspark使用XGboost训练模型实例

遇到一个还不错的使用Xgboost训练模型的githubhttps://github.com/MachineLP/Spark-/tree/master/pyspark-xgboost

1、这是一个跑通的代码实例,使用的是泰坦尼克生还数据,分类模型。

这里使用了Pipeline来封装特征处理和模型训练步骤,保存为pipelineModel

注意这里加载xgboost依赖的jar包和zip包的方法。

#这是用 pipeline 包装了XGBOOST的例子。 此路通!import os
import sys
import time
import pandas as pd
import numpy as np
import pyspark.sql.types as typ
import pyspark.ml.feature as ft
from pyspark.sql.functions import isnan, isnullfrom pyspark.sql.types import StructType, StructFieldfrom pyspark.sql.types import *
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
from pyspark.sql import SparkSessionos.environ['PYSPARK_PYTHON'] = 'Python3.7/bin/python'
os.environ['PYSPARK_SUBMIT_ARGS'] = '--jars xgboost4j-spark-0.90.jar,xgboost4j-0.90.jar pyspark-shell'spark = SparkSession \.builder \.appName("PySpark XGBOOST Titanic") \.config('spark.driver.allowMultipleContexts', 'true') \.config('spark.pyspark.python', 'Python3.7/bin/python') \.config('spark.yarn.dist.archives', 'hdfs://ns62007/user/dmc_adm/_PYSPARK_ENV/Python3.7.zip#Python3.7') \.config('spark.executorEnv.PYSPARK_PYTHON', 'Python3.7/bin/python') \.config('spark.sql.autoBroadcastJoinThreshold', '-1') \.enableHiveSupport() \.getOrCreate()spark.sparkContext.addPyFile("sparkxgb.zip")schema = StructType([StructField("PassengerId", DoubleType()),StructField("Survived", DoubleType()),StructField("Pclass", DoubleType()),StructField("Name", StringType()),StructField("Sex", StringType()),StructField("Age", DoubleType()),StructField("SibSp", DoubleType()),StructField("Parch", DoubleType()),StructField("Ticket", StringType()),StructField("Fare", DoubleType()),StructField("Cabin", StringType()),StructField("Embarked", StringType())])upload_file = "titanic/train.csv"
hdfs_path = "hdfs://tmp/gao/dev_data/dmb_upload_data/"
file_path = os.path.join(hdfs_path, upload_file.split("/")[-1])df_raw = spark\.read\.option("header", "true")\.schema(schema)\.csv(file_path)df_raw.show(20)
df = df_raw.na.fill(0)sexIndexer = StringIndexer()\.setInputCol("Sex")\.setOutputCol("SexIndex")\.setHandleInvalid("keep")cabinIndexer = StringIndexer()\.setInputCol("Cabin")\.setOutputCol("CabinIndex")\.setHandleInvalid("keep")embarkedIndexer = StringIndexer()\.setInputCol("Embarked")\.setHandleInvalid("keep")# .setOutputCol("EmbarkedIndex")\vectorAssembler = VectorAssembler()\.setInputCols(["Pclass", "Age", "SibSp", "Parch", "Fare"])\.setOutputCol("features")from sparkxgb import XGBoostClassifier
xgboost = XGBoostClassifier(maxDepth=3,missing=float(0.0),featuresCol="features",labelCol="Survived"
)pipeline = Pipeline(stages=[vectorAssembler, xgboost])trainDF, testDF = df.randomSplit([0.8, 0.2], seed=24)
trainDF.show(2)
model = pipeline.fit(trainDF)print (88888888888888888888)
model.transform(testDF).select(col("PassengerId"), col("Survived"), col("prediction")).show()
print (9999999999999999999)# Write model/classifier
model.write().overwrite().save(os.path.join(hdfs_path,"xgboost_class_test"))from pyspark.ml import PipelineModel
model1 = PipelineModel.load(os.path.join(hdfs_path,"xgboost_class_test"))
model1.transform(testDF).show()

这是执行结果:

2、当然也可以不用pipeline封装,直接训练xgboost模型,并保存。

但这里遇到无法加载训练好的xgb模型的问题。

# Train a xgboost model
from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder, StandardScaler
from pyspark.ml import Pipeline
from sparkxgb import XGBoostClassifierassembler = VectorAssembler(inputCols=[ 'Pclass', 'Age', 'SibSp', 'Parch','Fare'],outputCol="features", handleInvalid="skip")xgboost = XGBoostClassifier(maxDepth=3,missing=float(0.0),featuresCol="features", labelCol="Survived")# pipeline = Pipeline(stages=[assembler, xgboost])
# trained_model = pipeline.fit(data)td = assembler.transform(data)
trained_raw_model = xgboost.fit(td)result = trained_raw_model.transform(td)
result.select(["Survived", "rawPrediction", "probability", "prediction"]).show()# save trained model to local disk
trained_raw_model.nativeBooster.saveModel("outputmodel.xgboost")# 无法加载已经训练好的XGB模型
from sparkxgb import XGBoostClassifier,XGBoostClassificationModel
model1= XGBoostClassificationModel.load("outputmodel.xgboost")
model1.transform(td).show()

这是运行结果:

 这里报错,无法使用 XGBoostClassificationModel加载已经训练好的XGB模型。

 

相关文章:

pyspark使用XGboost训练模型实例

遇到一个还不错的使用Xgboost训练模型的githubhttps://github.com/MachineLP/Spark-/tree/master/pyspark-xgboost 1、这是一个跑通的代码实例,使用的是泰坦尼克生还数据,分类模型。 这里使用了Pipeline来封装特征处理和模型训练步骤,保存为…...

完整模型的训练套路

从心所欲 不逾矩 天大地大 皆可去 一、官方模型的初使用 使用VGG16模型 VGG模型使用代码示例: import torchvision.models from torch import nndataset torchvision.datasets.CIFAR10(/cifar10, False, transformtorchvision.transforms.ToTensor())vgg16_true …...

PtahDAO:全球首个DAO治理资产信托计划的金融平台

金融科技是当今世界最具创新力和影响力的领域之一,区块链技术作为金融科技的核心驱动力,正在颠覆传统的金融模式,为全球用户提供更加普惠、便捷、安全的金融服务。在这个变革的浪潮中,PtahDAO(普塔道)作为全…...

从零搭建一个react + electron项目

最近打算搭建一个react electron的项目,发现并不是那么傻瓜式 于是记录一下自己的实践步骤 通过create-react-app 创建react项目 npx create-react-app my-app 安装electron依赖 npm i electron -D暴露react项目的配置文件(这一步看自己需求&#xff0c…...

MATLAB /Simulink 快速开发STM32(使用st官方工具 STM32-MAT/TARGET),以及开发过程

配置好环境以后就是开发: stm32cube配置芯片,打开matlab添加ioc文件,写处理逻辑,生成代码,下载到板子中去。 配置需要注意事项: STM32CUBEMAX6.5.0 MABLAB2022BkeilV5.2 Matlab生成的代码CTRLB 其中关键的…...

LeetCode 热题 100 JavaScript--102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 示例 2: 输入:root [1…...

常见Git命令

Git常见命令 1. 添加单个文件 git add a.txt2. 添加多个文件 git add a.txt b.txt c.txt3. 添加(commit)修改,此时修改还未push到服务器上 git commit -m "修改了a.txt内容"4. 提交(push)修改,此时修改会同步到服务器上 git push5. 查看当…...

在C语言中调用汇编语言的函数

在C语言中调用汇编文件中的函数,要做的主要工作有两个: 一是在C语言中声明函数原型,并加extern关键字; 二是在汇编中用EXPORT导出函数名,并用该函数名作为汇编代码段的标识,最后用mov pc, lr返回。然后&a…...

Delphi Professional Crack,IDE插件开发和扩展IDE

Delphi Professional Crack,IDE插件开发和扩展IDE 构建具有强大视觉设计功能的单源多平台本机应用程序。 Delphi帮助您使用Object Pascal为Windows、Mac、Mobile、IoT和Linux构建和更新数据丰富、超连接、可视化的应用程序。Delphi Professional适合个人开发人员和小型团队构建…...

程序框架-公共MONO模块

作用:让没有继承MONO的类可以开启协程,可以update更新,可以统一管理update MonoController脚本继承MonoBehaviour使得脚本过场不移除,并通过UnityAction可以添加多个函数(多播委托),实现Update…...

采用鲁棒随机森林实现的流异常检测:Python应用的一种新型机器学习方法

在数字化和互联网化日益普遍的现代社会,处理海量的网络流量数据是网络安全分析中不可或缺的一部分。流异常检测是一种重要的技术,用于发现可能的安全威胁,例如:网络攻击、恶意行为和系统故障等。随机森林是一种普遍用于解决这类问题的机器学习算法。在本文中,我们将介绍一…...

缓存友好在实际编程中的重要性

引入 当CPU执行程序时,需要频繁地访问主存储器(RAM)中的数据和指令。然而,主存储器的访问速度相对较慢,与CPU的运算速度相比存在显著差异,每次都从主存中读取数据都会导致相对较长的等待时间,从…...

uni-ajax网络请求库使用

uni-ajax网络请求库使用 uni-ajax是什么 uni-ajax是基于 Promise 的轻量级 uni-app 网络请求库,具有开箱即用、轻量高效、灵活开发 特点。 下面是安装和使用教程 安装该请求库到项目中 npm install uni-ajax编辑工具类request.js // ajax.js// 引入 uni-ajax 模块 import ajax…...

MYSQL进阶-事务

1.什么是数据库事务? 事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执 行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上 的一组操作,要么都执行,要么都不执行。 事务…...

python 常见数据类型和方法

不可变数据类型 不支持直接增删改 只能查 str 字符串 int 整型 bool 布尔值 None None型特殊常量 tuple 元组(,,,)回到顶部 可变数据类型,支持增删改查 list 列表[,,,] dic 字典{"":"","": ,} set 集合("",""…...

a-date-picker报错TypeError: date4.locale is not a function

问题描述 使用日期选择器,数据从后端获得,再赋值给a-date-picker做数据回显,遇到这个报错,排错后定位到a-date-picker组件本身接收数据的问题。 如果使用了dayjs或moment库来处理时间字符串,并且使用.format对时间数据…...

LNMP安装

目录 1、LNMP简述: 1.1、概述 1.2、LNMP是一个缩写词,及每个字母的含义 1.3、编译安装与yum安装差异 1.4、编译安装的优点 2、通过LNMP创建论坛 2.1、 安装nginx服务 2.1.1、关闭防火墙 2.1.2、创建运行用户 2.1.3、 编译安装 2.1.4、 优化路…...

matplotlib绘图风格

文章目录 绘图风格测试代码默认和mpl风格复制风格seaborn风格 绘图风格 matplotlib功能强大,可以定制各种绘图要素,以满足个性化的绘图需求,而更换绘图风格也十分便捷,一个matplotlib.style.use函数轻松搞定,而可用的…...

【初级教程】Appium 启动应用 log 日志分析

刚开始学习 appium 时,老师给我布置了 appium 启动应用 log 分析的作业。由于工作比较忙,再者自己想先动手用 appium 写个公司的 app 的 UI 测试(目前简单的框架基本完成,在不断完善用例管理中)。写这篇文章是为了完成…...

FANUC机器人SRVO-300机械手断裂故障报警原因分析及处理办法

FANUC机器人SRVO-300机械手断裂故障报警原因分析及处理办法 首先,我们查看报警说明书上的介绍: 总结:即在机械手断裂设置为无效时,机器人检测出了机械手断裂信号(不该有的信号,现在检测到了,所以报警) 使机械手断裂设定为无效/有效的具体方法:  按下示教器的MENU菜单…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...