当前位置: 首页 > news >正文

【深度学习_TensorFlow】梯度下降

写在前面

一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱


写在中间

线性回归方程


如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线

但是,如果我们选取的这两个点不在直线上,而是存在误差(暂且称作观测误差),这样求出的直线就会和原直线相差很大,我们应该怎样做呢?首先肯定不能只通过两个点,就武断地求出这条直线。

在这里插入图片描述

我们通常尽可能多地使用分布在直线周围的点,也可能不存在一条直线完美的穿过所有采样点。那么,退而求其次,我们希望能找到一条比较“好”的位于采样点中间的直线。那么怎么衡量“好”与“不好”呢?一个很自然的想法就是,求出当前模型的所有采样点上的预测值𝑤𝑥(𝑖) + 𝑏与真实值𝑦(𝑖)之间的差的平方和作为总误差 L \mathcal{L} L,然后搜索一组参数 w ∗ , b ∗ w^{*},b^{*} w,b使得 L \mathcal{L} L最小,对应的直线就是我们要寻找的最优直线。

w ∗ , b ∗ = arg ⁡ min ⁡ w , b 1 n ∑ i = 1 n ( w x ( i ) + b − y ( i ) ) 2 w^*,b^*=\arg\min_{w,b}\frac{1}{n}\sum_{i=1}^{n}\bigl(wx^{(i)}+b-y^{(i)}\bigr)^2 w,b=argminw,bn1i=1n(wx(i)+by(i))2

最后再通过梯度下降法来不断优化参数 w ∗ , b ∗ w^{*},b^{*} w,b

有基础的小伙伴们可能知道求误差的方法其实就是均方误差函数,不懂得可以看这篇文章补充养分《误差函数》 ,我们这篇文章就侧重梯度下降。

梯度下降


函数的梯度定义为函数对各个自变量的偏导数组成的向量。不会的话,翻翻高等数学下册书。

举个例子,对于曲面函数𝑧 = 𝑓(𝑥, 𝑦),函数对自变量𝑥的偏导数记为 ∂ z ∂ x \frac{\partial z}{\partial x} xz,函数对自变量𝑦的偏导数记为 ∂ z ∂ y \frac{\partial z}{\partial y} yz,则梯度∇𝑓为向量 ( ∂ z ∂ x , ∂ z ∂ y ) ({\frac{\partial z}{\partial x}},{\frac{\partial z}{\partial y}}) (xz,yz),梯度的方向总是指向当前位置函数值增速最大的方向,函数曲面越陡峭,梯度的模也越大。

函数在各处的梯度方向∇𝑓总是指向函数值增大的方向,那么梯度的反方向−∇𝑓应指向函数值减少的方向。利用这一性质,我们只需要按照下式来更新参数,,其中𝜂用来缩放梯度向量,一般设置为某较小的值,如 0.01、0.001 等。

x ′ = x − η ⋅ d y d x x'=x-\eta\cdot\frac{\mathrm{d}y}{\mathrm{d}x} x=xηdxdy

结合上面的回归方程,我们就可对误差函数求偏导,以循环的方式更新参数 w , b w,b w,b

w ′ = w − η ∂ L ∂ w b ′ = b − η ∂ L ∂ b \begin{aligned}w'&=w-\eta\frac{\partial\mathcal{L}}{\partial w}\\\\b'&=b-\eta\frac{\partial\mathcal{L}}{\partial b}\end{aligned} wb=wηwL=bηbL

函数实现


计算过程都需要包裹在 with tf.GradientTape() as tape 上下文中,使得前向计算时能够保存计算图信息,方便自动求导操作。通过tape.gradient()函数求得网络参数到梯度信息,结果保存在 grads 列表变量中。

GradientTape()函数

GradientTape(persistent=False, watch_accessed_variables=True)

  • persistent: 布尔值,用来指定新创建的gradient
    tape是否是可持续性的。默认是False,意味着只能够调用一次GradientTape()函数,再次使用会报错

  • watch_accessed_variables:布尔值,表明GradientTape()函数是否会自动追踪任何能被训练的变量。默认是True。要是为False的话,意味着你需要手动去指定你想追踪的那些变量。

tape.watch()函数

tape.watch()用于跟踪指定类型的tensor变量。

  • 由于GradientTape()默认只对tf.Variable类型的变量进行监控。如果需要监控的变量是tensor类型,则需要tape.watch()来监控,否则输出结果将是None

tape.gradient()函数

tape.gradient(target, source)

  • target:求导的因变量

  • source:求导的自变量

import tensorflow as tfw = tf.constant(1.)
x = tf.constant(2.)
y = x * wwith tf.GradientTape() as tape:tape.watch([w])y = x * wgrads = tape.gradient(y, [w])
print(grads)

写在最后

👍🏻点赞,你的认可是我创作的动力!
⭐收藏,你的青睐是我努力的方向!
✏️评论,你的意见是我进步的财富!

相关文章:

【深度学习_TensorFlow】梯度下降

写在前面 一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱 写在中间 线性回归方程 如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线 但是,如果我们选取的这两个点不在直…...

C++使用 auto 自动推断类型

C使用 auto 自动推断类型 在有些情况下, 根据赋给变量的初值, 很容易知道其类型。 例如, 如果将变量的初值设置成了 true,就可推断其类型为 bool。如果您使用的编译器支持 C11 和更高版本,可不显式地指定变量的类型&a…...

【前端面试手撕题】call、bind、new、freeze、浅拷贝

FED11 _call函数 描述 请补全JavaScript代码&#xff0c;要求实现Function.call函数的功能且该新函数命名为"_call"。 <!DOCTYPE html> <html><head><meta charset"UTF-8"><style>/* 填写样式 */</style> </head…...

MacBook Pro 16 M1 Max 升级 macOS Ventura 13.5 兼容测评

今天给大家带来了 MacBook Pro 16 M1 Max 升级 macOS Ventura 13.5 兼容 100 挑战赛 的视频&#xff0c;现在充电头再以文章的形式呈现给大家&#xff0c;让大家更清楚、直白的了解这款笔记本在升级系统后的兼容性如何。 MacBook Pro 16 M1 Max 配置了 140W 的 MagSafe 充电口&…...

实现5*5正方形网格x轴和y轴显示对应数值组件封装

实现5*5正方形网格x轴和y轴显示对应数值组件封装 需求&#xff1a;按5*5的正方形网格&#xff0c;根据目标数据的x和y轴值显示对应的文字&#xff0c;实现效果图如下&#xff1a;&#xff08;当前目标数值&#xff1a;x2&#xff0c;y2&#xff09; 代码如下&#xff1a; <…...

基于Matlab实现图像压缩技术(附上完整源码+图像+程序运行说明)

介绍 图像压缩是一种将图像数据压缩以减小文件大小的技术。在数字图像处理中&#xff0c;图像通常以像素阵列的形式表示。对于大型图像文件&#xff0c;传输和存储成本可能很高&#xff0c;因此图像压缩技术变得至关重要。在本文中&#xff0c;我们将介绍一种使用Matlab实现图…...

棒球联盟对于市场发展规划·棒球1号位

棒球联盟对于市场发展规划 1. 棒球联盟市场发展背景分析 在深入探讨棒球联盟市场发展背景之前&#xff0c;我们首先要明确&#xff0c;棒球&#xff0c;作为一种全球流行的体育项目&#xff0c;其在市场上的发展具有相当悠久的历史。棒球文化的起源可以追溯到上个世纪初&#…...

ansible控制主机和受控主机之间免密及提权案例

目录 案例描述 环境准备 案例一--免密远程控制主机 效果展示&#xff1a; 解决方案 1.添加主机 2.通过ssh-key生成密钥对 3.生成ssh-copy-id 4.验证 案例二-----免密普通用户提权 效果展示 解决方案 1.使用普通用户&#xff0c;与案例一 一样&#xff0c;进行发送密钥…...

flink1.17 eventWindow不要配置processTrigger

理论上可以eventtime processtime混用,但是下面代码测试发现bug,输入一条数据会一直输出. flink github无法提bug/问题. apache jira账户新建后竟然flink又需要一个账户,放弃 bug复现操作 idea运行代码后 往source kafka发送一条数据 a,1,1690304400000 可以看到无限输出…...

Python导出SqlServerl数据字典为excel

sql代码 SELECTtableName D.name ,tableIntroduce isnull(F.value, ),sort A.colorder,fieldName A.name,catogary B.name,bytes A.Length,lengths COLUMNPROPERTY(A.id, A.name, PRECISION),scales isnull(COLUMNPROPERTY(A.id, A.name, Scale), 0),isOrNotNull Cas…...

PB:DDE服务器函数

1、GetCommandDDE() 功 能:得到DDE客户应用发送的命令。 语 法:GetCommandDDE ( string ) 参 数:string:string类型的变量,用于保存DDE客户应用发送的命令。 返回值:Integer。函数执行成功时返回1,发生错误时返回-1。如果string参数的值为NULL, GetCommandDDE()…...

awk经典实战、正则表达式

目录 1.筛选给定时间范围内的日志 2.统计独立IP 案列 需求 代码 运行结果 3.根据某字段去重 案例 运行结果 4.正则表达式 1&#xff09;认识正则 2&#xff09;匹配字符 3&#xff09;匹配次数 4&#xff09;位置锚定&#xff1a;定位出现的位置 5&#xff09;分组…...

Python脚本-时间盲注

BlindBool_get import requests from optparse import OptionParser import threading#存放变量 DBName "" DBTables [] DBColumns [] DBData {} flag You are in #设置重连次数以及将连接改为短连接 #防止因为HTTP连接数过多导致的MAX retries exceeded with …...

面试总结-Redis篇章(十)——Redis哨兵模式、集群脑裂

Redis哨兵模式、集群脑裂 哨兵模式哨兵的作用服务状态监控 Redis集群&#xff08;哨兵模式&#xff09;脑裂解决办法 哨兵模式 为了保证Redis的高可用&#xff0c;Redis提供了哨兵模式 哨兵的作用 服务状态监控 Redis集群&#xff08;哨兵模式&#xff09;脑裂 假设由于网络原…...

el-table那些事

el-table那些事 获取el-table所有勾选的行数据 用于记录工作和日常学习遇到的坑&#xff0c;需求。 vue3element-plusts 获取el-table所有勾选的行数据 1、需要先声明一个ref变量&#xff0c;并赋值给el-table 2、通过el-table提供的getSelectionRows()函数获取选中的"行…...

kubernetes(一)

文章目录 1. k8s架构2. k8s集群搭建 1. k8s架构 2. k8s集群搭建...

计算机网络(6) --- https协议

计算机网络&#xff08;5&#xff09; --- http协议_哈里沃克的博客-CSDN博客http协议https://blog.csdn.net/m0_63488627/article/details/132089130?spm1001.2014.3001.5501 目录 1.HTTPS的出现 1.HTTPS协议介绍 2.补充概念 1.加密 1.解释 2.原因 3.加密方式 对称加…...

(三)Node.js - 模块化

1. Node.js中的模块化 Node.js中根据模块来源不同&#xff0c;将模块分为了3大类&#xff0c;分别是&#xff1a; 内置模块&#xff1a;内置模块由Node.js官方提供的&#xff0c;例如fs、path、http等自定义模块&#xff1a;用户创建的每个.js文件&#xff0c;都是自定义模块…...

502 bad gateway报错

代码在本地运行可以正常访问后端接口&#xff0c;部署服务器报错502。直接检查防火墙状态是否开启&#xff0c;先关闭防火墙试一下。如果是防火墙的原因在打开防火墙&#xff0c;开放需要的端口即可。 1、先查看防火墙状态&#xff1a; systemctl status firewalld2、停止防火…...

Flink学习教程

最近因为用到了Flink&#xff0c;所以博主开了《Flink教程》专栏来记录Flink的学习笔记。 【Apache Flink v1.16 中文文档】 【官网 - Apache Flink v1.3 中文文档】 一、基础 参考链接如下&#xff1a; Flink教程&#xff08;01&#xff09;- Flink知识图谱Flink教程&…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...