GoogLeNet卷积神经网络输出数据形参分析-笔记
GoogLeNet卷积神经网络输出数据形参分析-笔记
分析结果为:
输入数据形状:[10, 3, 224, 224]
最后输出结果:linear_0 [10, 1] [1024, 1] [1]
子空间执行逻辑
def forward_old(self, x):# 支路1只包含一个1x1卷积p1 = F.relu(self.p1_1(x))# 支路2包含 1x1卷积 + 3x3卷积p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))# 支路3包含 1x1卷积 + 5x5卷积p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))# 支路4包含 最大池化和1x1卷积p4 = F.relu(self.p4_2(self.p4_1(x)))# 将每个支路的输出特征图拼接在一起作为最终的输出结果return paddle.concat([p1, p2, p3, p4], axis=1)# return self.batchnorm()
其中拼接张量情况为:
拼接代码:paddle.concat([p1, p2, p3, p4], axis=1)
如
p1=[10,64,5,6,56]
p2=[10,128,56,56]
p3=[10,32,56,56]
p4=[10,32,56,56]
拼接后结果为:【10,256,56,56】 sum(64+128+32+32)=256
分析详细过程如下所示:
PS E:\project\python> & D:/ProgramData/Anaconda3/python.exe e:/project/python/PM/GoogLeNet_PM.py
W0804 11:14:26.736726 5484 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.2, Runtime API Version: 10.2
W0804 11:14:26.747695 5484 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
116
(10, 3, 224, 224)
[10, 3, 224, 224]
#第一模块 包括一个7X7的卷积
conv2d_0 [10, 64, 224, 224] [64, 3, 7, 7] [64]
# 3x3最大池化
max_pool2d_0 [10, 64, 112, 112]
# 第二个模块包含2个卷积层
conv2d_1 [10, 64, 112, 112] [64, 64, 1, 1] [64]
conv2d_2 [10, 192, 112, 112] [192, 64, 3, 3] [192]
# 3x3最大池化
max_pool2d_1 [10, 192, 56, 56]
# 第三个模块包含2个Inception块
print block3-1: Inception盗梦空间1 即子空间1
conv2d_3 [10, 64, 56, 56] [64, 192, 1, 1] [64]
conv2d_4 [10, 96, 56, 56] [96, 192, 1, 1] [96]
conv2d_5 [10, 128, 56, 56] [128, 96, 3, 3] [128]
conv2d_6 [10, 16, 56, 56] [16, 192, 1, 1] [16]
conv2d_7 [10, 32, 56, 56] [32, 16, 5, 5] [32]
max_pool2d_2 [10, 192, 56, 56]
conv2d_8 [10, 32, 56, 56] [32, 192, 1, 1] [32]
block3_1.shape= [10, 256, 56, 56]
print block3-2: Inception盗梦空间2 即子空间2
conv2d_9 [10, 128, 56, 56] [128, 256, 1, 1] [128]
conv2d_10 [10, 128, 56, 56] [128, 256, 1, 1] [128]
conv2d_11 [10, 192, 56, 56] [192, 128, 3, 3] [192]
conv2d_12 [10, 32, 56, 56] [32, 256, 1, 1] [32]
conv2d_13 [10, 96, 56, 56] [96, 32, 5, 5] [96]
max_pool2d_3 [10, 256, 56, 56]
conv2d_14 [10, 64, 56, 56] [64, 256, 1, 1] [64]
block3_2.shape= [10, 480, 56, 56]
# 3x3最大池化
max_pool2d_4 [10, 480, 28, 28]
# 第四个模块包含5个Inception块
print block4_1:
conv2d_15 [10, 192, 28, 28] [192, 480, 1, 1] [192]
conv2d_16 [10, 96, 28, 28] [96, 480, 1, 1] [96]
conv2d_17 [10, 208, 28, 28] [208, 96, 3, 3] [208]
conv2d_18 [10, 16, 28, 28] [16, 480, 1, 1] [16]
conv2d_19 [10, 48, 28, 28] [48, 16, 5, 5] [48]
max_pool2d_5 [10, 480, 28, 28]
conv2d_20 [10, 64, 28, 28] [64, 480, 1, 1] [64]
block4_1.shape= [10, 512, 28, 28]
print block4_2:
conv2d_21 [10, 160, 28, 28] [160, 512, 1, 1] [160]
conv2d_22 [10, 112, 28, 28] [112, 512, 1, 1] [112]
conv2d_23 [10, 224, 28, 28] [224, 112, 3, 3] [224]
conv2d_24 [10, 24, 28, 28] [24, 512, 1, 1] [24]
conv2d_25 [10, 64, 28, 28] [64, 24, 5, 5] [64]
max_pool2d_6 [10, 512, 28, 28]
conv2d_26 [10, 64, 28, 28] [64, 512, 1, 1] [64]
block4_2.shape= [10, 512, 28, 28]
print block4_3:
conv2d_27 [10, 128, 28, 28] [128, 512, 1, 1] [128]
conv2d_28 [10, 128, 28, 28] [128, 512, 1, 1] [128]
conv2d_29 [10, 256, 28, 28] [256, 128, 3, 3] [256]
conv2d_30 [10, 24, 28, 28] [24, 512, 1, 1] [24]
conv2d_31 [10, 64, 28, 28] [64, 24, 5, 5] [64]
max_pool2d_7 [10, 512, 28, 28]
conv2d_32 [10, 64, 28, 28] [64, 512, 1, 1] [64]
block4_3.shape= [10, 512, 28, 28]
print block4_4:
conv2d_33 [10, 112, 28, 28] [112, 512, 1, 1] [112]
conv2d_34 [10, 144, 28, 28] [144, 512, 1, 1] [144]
conv2d_35 [10, 288, 28, 28] [288, 144, 3, 3] [288]
conv2d_36 [10, 32, 28, 28] [32, 512, 1, 1] [32]
conv2d_37 [10, 64, 28, 28] [64, 32, 5, 5] [64]
max_pool2d_8 [10, 512, 28, 28]
conv2d_38 [10, 64, 28, 28] [64, 512, 1, 1] [64]
block4_4.shape= [10, 528, 28, 28]
print block4_5:
conv2d_39 [10, 256, 28, 28] [256, 528, 1, 1] [256]
conv2d_40 [10, 160, 28, 28] [160, 528, 1, 1] [160]
conv2d_41 [10, 320, 28, 28] [320, 160, 3, 3] [320]
conv2d_42 [10, 32, 28, 28] [32, 528, 1, 1] [32]
conv2d_43 [10, 128, 28, 28] [128, 32, 5, 5] [128]
max_pool2d_9 [10, 528, 28, 28]
conv2d_44 [10, 128, 28, 28] [128, 528, 1, 1] [128]
block4_5.shape= [10, 832, 28, 28]
max_pool2d_10 [10, 832, 14, 14]
# 第五个模块包含2个Inception块(block5_1,block5_2)
print block5_1:
conv2d_45 [10, 256, 14, 14] [256, 832, 1, 1] [256]
conv2d_46 [10, 160, 14, 14] [160, 832, 1, 1] [160]
conv2d_47 [10, 320, 14, 14] [320, 160, 3, 3] [320]
conv2d_48 [10, 32, 14, 14] [32, 832, 1, 1] [32]
conv2d_49 [10, 128, 14, 14] [128, 32, 5, 5] [128]
max_pool2d_11 [10, 832, 14, 14]
conv2d_50 [10, 128, 14, 14] [128, 832, 1, 1] [128]
block5_1.shape= [10, 832, 14, 14]
print block5_2:
conv2d_51 [10, 384, 14, 14] [384, 832, 1, 1] [384]
conv2d_52 [10, 192, 14, 14] [192, 832, 1, 1] [192]
conv2d_53 [10, 384, 14, 14] [384, 192, 3, 3] [384]
conv2d_54 [10, 48, 14, 14] [48, 832, 1, 1] [48]
conv2d_55 [10, 128, 14, 14] [128, 48, 5, 5] [128]
max_pool2d_12 [10, 832, 14, 14]
conv2d_56 [10, 128, 14, 14] [128, 832, 1, 1] [128]
block5_2.shape= [10, 1024, 14, 14]
adaptive_avg_pool2d_0 [10, 1024, 1, 1]
linear_0 [10, 1] [1024, 1] [1]
PS E:\project\python>
分析测试代码如下所示:
# GoogLeNet模型代码
#GoogLeNet卷积神经网络-笔记
import numpy as np
import paddle
from paddle.nn import Conv2D, MaxPool2D, AdaptiveAvgPool2D, Linear
## 组网
import paddle.nn.functional as F#分析形参定制版本方法
def printItem(item,x):# item是CNN类中的一个子层# 查看经过子层之后的输出数据形状try:x = item(x)except:x = paddle.reshape(x, [x.shape[0], -1])x = item(x) if len(item.parameters())==2:# 查看卷积和全连接层的数据和参数的形状,# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数bprint(item.full_name(), x.shape, item.parameters()[0].shape, item.parameters()[1].shape)else:# 池化层没有参数print(item.full_name(), x.shape) return x; # 定义Inception块
class Inception(paddle.nn.Layer):def __init__(self, c0, c1, c2, c3, c4, **kwargs):'''Inception模块的实现代码,c1,图(b)中第一条支路1x1卷积的输出通道数,数据类型是整数c2,图(b)中第二条支路卷积的输出通道数,数据类型是tuple或list, 其中c2[0]是1x1卷积的输出通道数,c2[1]是3x3c3,图(b)中第三条支路卷积的输出通道数,数据类型是tuple或list, 其中c3[0]是1x1卷积的输出通道数,c3[1]是3x3c4,图(b)中第一条支路1x1卷积的输出通道数,数据类型是整数'''super(Inception, self).__init__()# 依次创建Inception块每条支路上使用到的操作self.p1_1 = Conv2D(in_channels=c0,out_channels=c1, kernel_size=1, stride=1)self.p2_1 = Conv2D(in_channels=c0,out_channels=c2[0], kernel_size=1, stride=1)self.p2_2 = Conv2D(in_channels=c2[0],out_channels=c2[1], kernel_size=3, padding=1, stride=1)self.p3_1 = Conv2D(in_channels=c0,out_channels=c3[0], kernel_size=1, stride=1)self.p3_2 = Conv2D(in_channels=c3[0],out_channels=c3[1], kernel_size=5, padding=2, stride=1)self.p4_1 = MaxPool2D(kernel_size=3, stride=1, padding=1)self.p4_2 = Conv2D(in_channels=c0,out_channels=c4, kernel_size=1, stride=1)# # 新加一层batchnorm稳定收敛# self.batchnorm = paddle.nn.BatchNorm2D(c1+c2[1]+c3[1]+c4)def forward_old(self, x):# 支路1只包含一个1x1卷积p1 = F.relu(self.p1_1(x))# 支路2包含 1x1卷积 + 3x3卷积p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))# 支路3包含 1x1卷积 + 5x5卷积p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))# 支路4包含 最大池化和1x1卷积p4 = F.relu(self.p4_2(self.p4_1(x)))# 将每个支路的输出特征图拼接在一起作为最终的输出结果return paddle.concat([p1, p2, p3, p4], axis=1)# return self.batchnorm()#分析形参定制版本方法def forward(self,x):p1=printItem(self.p1_1,x)p1=F.relu(p1)#p2=printItem(self.p2_1,x)p2=F.relu(p2)p2=printItem(self.p2_2,p2)p2=F.relu(p2)#p3=printItem(self.p3_1,x)p3=F.relu(p3)p3=printItem(self.p3_2,p3)p3=F.relu(p3)#p4=printItem(self.p4_1,x)p4=printItem(self.p4_2,p4)p4=F.relu(p4)return paddle.concat([p1, p2, p3, p4], axis=1);class GoogLeNet(paddle.nn.Layer):def __init__(self):super(GoogLeNet, self).__init__()# GoogLeNet包含五个模块,每个模块后面紧跟一个池化层# 第一个模块包含1个卷积层self.conv1 = Conv2D(in_channels=3,out_channels=64, kernel_size=7, padding=3, stride=1)# 3x3最大池化self.pool1 = MaxPool2D(kernel_size=3, stride=2, padding=1)# 第二个模块包含2个卷积层self.conv2_1 = Conv2D(in_channels=64,out_channels=64, kernel_size=1, stride=1)self.conv2_2 = Conv2D(in_channels=64,out_channels=192, kernel_size=3, padding=1, stride=1)# 3x3最大池化self.pool2 = MaxPool2D(kernel_size=3, stride=2, padding=1)# 第三个模块包含2个Inception块self.block3_1 = Inception(192, 64, (96, 128), (16, 32), 32)self.block3_2 = Inception(256, 128, (128, 192), (32, 96), 64)# 3x3最大池化self.pool3 = MaxPool2D(kernel_size=3, stride=2, padding=1)# 第四个模块包含5个Inception块self.block4_1 = Inception(480, 192, (96, 208), (16, 48), 64)self.block4_2 = Inception(512, 160, (112, 224), (24, 64), 64)self.block4_3 = Inception(512, 128, (128, 256), (24, 64), 64)self.block4_4 = Inception(512, 112, (144, 288), (32, 64), 64)self.block4_5 = Inception(528, 256, (160, 320), (32, 128), 128)# 3x3最大池化self.pool4 = MaxPool2D(kernel_size=3, stride=2, padding=1)# 第五个模块包含2个Inception块self.block5_1 = Inception(832, 256, (160, 320), (32, 128), 128)self.block5_2 = Inception(832, 384, (192, 384), (48, 128), 128)# 全局池化,用的是global_pooling,不需要设置pool_strideself.pool5 = AdaptiveAvgPool2D(output_size=1)self.fc = Linear(in_features=1024, out_features=1)def forward(self, x):x = self.pool1(F.relu(self.conv1(x)))x = self.pool2(F.relu(self.conv2_2(F.relu(self.conv2_1(x)))))x = self.pool3(self.block3_2(self.block3_1(x)))x = self.block4_3(self.block4_2(self.block4_1(x)))x = self.pool4(self.block4_5(self.block4_4(x)))x = self.pool5(self.block5_2(self.block5_1(x)))x = paddle.reshape(x, [x.shape[0], -1])x = self.fc(x)return x#分析形参定制版本方法 def printStruct(self,x):print(x.shape)x = paddle.to_tensor(x) #转为张量xprint(x.shape)#x=printItem(self.conv1,x)x=F.relu(x)x=printItem(self.pool1,x)#x=printItem(self.conv2_1,x) x=F.relu(x)x=printItem(self.conv2_2,x) x=F.relu(x) x=printItem(self.pool2,x)# print('print block3-1:') x=self.block3_1(x)print('block3_1.shape=',x.shape)print('print block3-2:') x=self.block3_2(x) print('block3_2.shape=',x.shape) x=printItem(self.pool3,x) #print('print block4_1:') x=self.block4_1(x)print('block4_1.shape=',x.shape) print('print block4_2:') x=self.block4_2(x) print('block4_2.shape=',x.shape)print('print block4_3:') x=self.block4_3(x) print('block4_3.shape=',x.shape)print('print block4_4:') x=self.block4_4(x) print('block4_4.shape=',x.shape)print('print block4_5:') x=self.block4_5(x) print('block4_5.shape=',x.shape) x=printItem(self.pool4,x) #print('print block5_1:') x=self.block5_1(x) print('block5_1.shape=',x.shape) print('print block5_2:') x=self.block5_2(x) print('block5_2.shape=',x.shape) x=printItem(self.pool5,x) x = paddle.reshape(x, [x.shape[0], -1])x=printItem(self.fc,x)return x#=================================
import PM
# 创建模型
model = GoogLeNet()
print(len(model.parameters()))
opt = paddle.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameters=model.parameters(), weight_decay=0.001)
# 启动训练过程
#PM.train_pm(model, opt)'''
#输出结果:
PS E:\project\python> & D:/ProgramData/Anaconda3/python.exe e:/project/python/PM/GoogLeNet_PM.py
W0803 18:25:55.522811 8308 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.2, Runtime API Version: 10.2
W0803 18:25:55.532805 8308 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.
116
start training ...
epoch: 0, batch_id: 0, loss is: 0.6920
epoch: 0, batch_id: 20, loss is: 0.8546
[validation] accuracy/loss: 0.7100/0.5381
epoch: 1, batch_id: 0, loss is: 0.6177
epoch: 1, batch_id: 20, loss is: 0.4581
[validation] accuracy/loss: 0.9400/0.3120
epoch: 2, batch_id: 0, loss is: 0.2858
epoch: 2, batch_id: 20, loss is: 0.5234
[validation] accuracy/loss: 0.5975/0.5757
epoch: 3, batch_id: 0, loss is: 0.6338
epoch: 3, batch_id: 20, loss is: 0.3180
[validation] accuracy/loss: 0.9575/0.1915
epoch: 4, batch_id: 0, loss is: 0.1087
epoch: 4, batch_id: 20, loss is: 0.3728
[validation] accuracy/loss: 0.9500/0.2322
PS E:\project\python>
'''# 输入数据形状是 [N, 3, H, W]
# 这里用np.random创建一个随机数组作为输入数据
x = np.random.randn(*[10,3,224,224])
x = x.astype('float32')
# 创建CNN类的实例,指定模型名称和分类的类别数目
#model = VGG(1)
#
model.printStruct(x);
#
相关文章:
GoogLeNet卷积神经网络输出数据形参分析-笔记
GoogLeNet卷积神经网络输出数据形参分析-笔记 分析结果为: 输入数据形状:[10, 3, 224, 224] 最后输出结果:linear_0 [10, 1] [1024, 1] [1] 子空间执行逻辑 def forward_old(self, x):# 支路1只包含一个1x1卷积p1 F.relu(self.p1_1(x))# 支路2包含 1…...

【docker】dockerfile发布springboot项目
目录 一、实现步骤二、示例 一、实现步骤 1.定义父镜像:FROM java:8 2.定义作者信息:MAINTAINER:learn_docker<https://www.docker.com> 3.将jar包添加到容器:ADD jar包名称.jar app.jar 4.定义容器启动执行命令:…...
利用docker run -v 命令实现使用宿主机中没有的命令
利用docker run -v 命令实现使用宿主机中没有的命令 使用容器中的jar命令解压jar包,并将解压内容输出到挂载在宿主机中的目录里 使用容器中的jar命令解压jar包,并将解压内容输出到挂载在宿主机中的目录里 docker run -it --name java -v /www/temp/java…...

【小沐学NLP】在线AI绘画网站(百度:文心一格)
文章目录 1、简介2、文心一格2.1 功能简介2.2 操作步骤2.3 使用费用2.4 若干示例2.4.1 女孩2.4.2 昙花2.4.3 山水画2.4.4 夜晚2.4.5 古诗2.4.6 二次元2.4.7 帅哥 结语 1、简介 当下,越来越多AI领域前沿技术争相落地,逐步释放出极大的产业价值࿰…...
react经验5:访问子组件内容
应用场景 父级需要调用子组件的某函数 实现步骤 案例:创建自定义按钮 button.tsx import { Ref, forwardRef, useImperativeHandle,ReactNode} from "react" declare type ButtonProps {/**按钮文字 */children?: ReactNode,onClick?: () > voi…...

【LeetCode】647. 回文子串
题目链接 文章目录 1. 思路讲解1.1 方法选择1.2 dp表的创建1.3 状态转移方程1.4 填表顺序 2. 代码实现 1. 思路讲解 1.1 方法选择 这道题我们采用动态规划的解法,倒不是动态规划的解法对于这道题有多好,它并不是最优解。但是,这道题的动态…...
Open3D(C++) 角度制与弧度制的相互转换
目录 一、弧度转角度1、计算公式2、主要函数3、示例代码4、结果展示二、角度转弧度1、计算公式2、主要函数3、示例代码4、结果展示三、归一化到(-PI,PI)1、主要函数<...

【小沐学NLP】在线AI绘画网站(网易云课堂:AI绘画工坊)
文章目录 1、简介1.1 参与方式1.2 模型简介 2、使用费用3、操作步骤3.1 选择模型3.2 输入提示词3.3 调整参数3.4 图片生成 4、测试例子4.1 小狗4.2 蜘蛛侠4.3 人物4.4 龙猫 结语 1、简介 Stable Diffusion是一种强大的图像生成AI,它可以根据输入的文字描述词&#…...
GNN code Tips
1. 重置label取值范围 problem: otherwise occurs IndexError: target out of bounds # reset labels value range, otherwise occurs IndexError: target out of bounds uni_set torch.unique(labels) to_set torch.tensor(list(range(len(uni_set)))) labels_reset label…...

物联网|按键实验---学习I/O的输入及中断的编程|函数说明的格式|如何使用CMSIS的延时|读取通过外部中断实现按键捕获代码的实现及分析-学习笔记(14)
文章目录 通过外部中断实现按键捕获代码的实现及分析Tip1:函数说明的格式Tip2:如何使用CMSIS的延时GetTick函数原型stm32f407_intr_handle.c解析中断处理函数:void EXTI4_IRQHandler 调试流程软件模拟调试 两种代码的比较课后作业: 通过外部中断实现按键捕获代码的实…...

Java对象的前世今生
文章目录 一、创建对象的步骤二、类加载机制三、内存分配指针碰撞 (内存连续)空闲列表 (内存不连续) 四、创建对象的5种方法五、浅拷贝与深拷贝 以下一行代码内部发生了什么? Person person new Person();一、创建对象的步骤 根据JLS中的规定,Java对象…...
Qt中JSON的使用
一.前言: JSON是一种轻量级数据交换格式,常用于客户端和服务端的数据交互,不依赖于编程语言,在很多编程语言中都可以使用JSON,比如C,C,Java,Android,Qt。除了JSON&#x…...

linux安装Tomcat部署jpress教程
yum在线安装: 查看tomcat相关的安装包: [rootRHCE ~]# yum list | grep -i tomcat tomcat.noarch 7.0.76-16.el7_9 updates tomcat-el-2.2-api.noarch 7.0.76-16.el7_9 updat…...

高并发负载均衡---LVS
目录 前言 一:负载均衡概述 二:为啥负载均衡服务器这么快呢? 编辑 2.1 七层应用程序慢的原因 2.2 四层负载均衡器LVS快的原因 三:LVS负载均衡器的三种模式 3.1 NAT模式 3.1.1 什么是NAT模式 3.1.2 NAT模式实现LVS的缺点…...

微前端中的 CSS
本文为翻译 本文译者为 360 奇舞团前端开发工程师原文标题:CSS in Micro Frontends 原文作者:Florian Rappl 原文地址:https://dev.to/florianrappl/css-in-micro-frontends-4jai 我被问得最多的问题之一是如何在微前端中处理 CSS。毕竟&…...
在CSDN学Golang场景化解决方案(分布式日志系统)
一,传统 elk 解决方案及其弊端 传统ELK(Elasticsearch Logstash Kibana)方案是一种流行的分布式日志系统解决方案,但也存在一些弊端: 依赖性:ELK使用Java编写,需要安装JVM,并且还…...

电脑第一次使用屏幕键盘
操作流程 1.在键盘上同时按WinR打开运行; 2.输入control 3.找到设置中心 4.点击屏幕键盘 效果 具体怎么使用 我不咋清除 简单 测试了一下 可以用鼠标点击屏幕键盘的按键 用键盘 按字母键和数字键 是和屏幕键盘不同步的 其他 tab、shift、后退、enter好像同步...

【C#学习笔记】类型转换
文章目录 类型转换字符转数字GetNumericValueConvert.ToInt32隐式转换计算 字符串转数字Parse 或 TryParse 方法 字节数组转整数 as,is强制类型转换isas 用户定义的转换 类型转换 我们简单地将值类型分为5种:整数型,浮点型,布尔型…...

SpringBoot+SSM实战<一>:打造高效便捷的企业级Java外卖订购系统
文章目录 项目简介项目架构功能模块管理端用户端 技术选型用户层网关层应用层数据层工具 项目优缺点结语 黑马程序员最新Java项目实战《苍穹外卖》:让你轻松掌握SpringBootSSM的企业级开发技巧项目简介 《苍穹外卖》是一款为餐饮企业(餐厅、饭店&#x…...
笙默考试管理系统-MyExamTest--calculagraph
笙默考试管理系统-MyExamTest--calculagra(1) 目录 一、 笙默考试管理系统-MyExamTest--calculagra 二、 笙默考试管理系统-MyExamTest--calculagra 三、 笙默考试管理系统-MyExamTest--calculagra 四、 笙默考试管理系统-MyExamTest--calculagra …...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

基于PHP的连锁酒店管理系统
有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发,数据库mysql,前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...