当前位置: 首页 > news >正文

数据结构-二叉树

数据结构-二叉树

    • 二叉树的概念
    • 二叉树的遍历分类
  • 建立二叉树,并遍历
    • 二叉树的最小单元
    • 二叉树的最小单元初始化
    • 初始化二叉树
    • 前序遍历的实现
    • 中序遍历的实现
    • 后序遍历的实现
    • 计算节点的个数
    • 计算树的深度
    • 求第k层的个数
    • 查找二叉树的元素
    • 分层遍历
  • 全部代码如下

二叉树的概念

在这里插入图片描述

二叉树的遍历分类

有前序遍历,中序遍历,后序遍历和层序遍历
在这里插入图片描述

规则

1.遇到根可以直接访问根
2.遇到左子树,右子树,不可以直接访问,要将其看作一颗新的二叉树,按遍历规则,再次循环,直至左子树或右子树为空,则可访问空。

前序遍历
在这里插入图片描述
中序遍历和后序遍历
中序遍历:
三者访问根的时机不同

层序遍历:一层一层的进行

1 2 4 3 5 6

建立二叉树,并遍历

二叉树的最小单元

根,左子树和右子树

typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;

二叉树的最小单元初始化

BTNode* BuyNode(BTDataType x)
{BTNode* node=(BTNode*)malloc(sizeof(BTNode));if (node==NULL){perror("malloc fail");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}

初始化二叉树

BTNode* CreatTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right=node6;return node1;
}

前序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:根,左子树,右子树

void PreOrder(BTNode* root)
{if (root==NULL){printf("NULL ");return;}//root,left,rightprintf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}

递归调用展开图
在这里插入图片描述

结果如下:
在这里插入图片描述

中序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:左子树,根,右子树

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

后序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:左子树,右子树,根

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

计算节点的个数

利用分治法求节点的个数,只有节点存在时,才会+1,并返回下层的统计个数
在这里插入图片描述

int TreeSize(BTNode* root)
{if (root==NULL){return 0;}else{return TreeSize(root->left) + TreeSize(root->right)+1;}
}

执行结果如下:
在这里插入图片描述

计算树的深度

在这里插入图片描述

int TreeHeight(BTNode* root)
{if (root==NULL){return 0;}int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 :rightHeight + 1;
}

代码执行结果如下:
在这里插入图片描述

求第k层的个数

在这里插入图片描述

int TreeLevel(BTNode* root,int k)
{if (root==NULL){return 0;}if (k==1){return 1;}return TreeLevel(root->left, k - 1) + TreeLevel(root->right, k - 1);
}

运行结果如下:
在这里插入图片描述

查找二叉树的元素

在这里插入图片描述

BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root==NULL){return NULL;}if (root->data==x){return root;}BTNode* lret = TreeFind(root->left, x);if (lret){return lret;}BTNode* rret = TreeFind(root->right, x);if (rret){return rret;}return NULL;
}

结果如下:
在这里插入图片描述

分层遍历

利用队列,先将根push,进入循环,可pop,再将层子节点push,依次循环。安照队列先进先出的原则,可实现分层打印

void LevelOrder(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q,root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ",front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}

结果如下:

在这里插入图片描述
判断是否为完全二叉树

bool TreeComplete(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front==NULL){break;}else{QueuePush(&q, front->left);QueuePush(&q, front->right);}}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

全部代码如下

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include "Queue.h"typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;BTNode* BuyNode(BTDataType x)
{BTNode* node=(BTNode*)malloc(sizeof(BTNode));if (node==NULL){perror("malloc fail");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}BTNode* CreatTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);//BTNode* node6 = BuyNode(6);//node1->left = node2;//node1->right = node4;//node2->left = node3;//node4->left = node5;//node4->right=node6;node1->left = node2;node1->right = node3;node2->left = node4;//node4->left = node5;node3->right = node5;return node1;
}void PreOrder(BTNode* root)
{if (root==NULL){printf("NULL ");return;}//root,left,rightprintf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}//分治法求节点的个数
int TreeSize(BTNode* root)
{if (root==NULL){return 0;}else{return TreeSize(root->left) + TreeSize(root->right)+1;}
}int TreeHeight(BTNode* root)
{if (root==NULL){return 0;}int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 :rightHeight + 1;
}int TreeLevel(BTNode* root,int k)
{if (root==NULL){return 0;}if (k==1){return 1;}return TreeLevel(root->left, k - 1) + TreeLevel(root->right, k - 1);
}//查找元素
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root==NULL){return NULL;}if (root->data==x){return root;}BTNode* lret = TreeFind(root->left, x);if (lret){return lret;}BTNode* rret = TreeFind(root->right, x);if (rret){return rret;}return NULL;
}//分层遍历
void LevelOrder(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q,root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ",front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}//判断是不是完全二叉树
bool TreeComplete(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front==NULL){break;}else{QueuePush(&q, front->left);QueuePush(&q, front->right);}}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}
int main()
{BTNode* root = CreatTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");printf("%d",TreeSize(root));printf("\n");printf("%d ", TreeHeight(root));printf("\n");printf("%d ", TreeLevel(root,3));printf("\n");printf("%p ", TreeFind(root, 5));printf("\n");printf("%p ", TreeFind(root, 60));printf("\n");LevelOrder(root);printf("TreeComplete: %d", TreeComplete(root));//二维数组return 0;
}

Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Queue.h"void QueueInit(Quene* pq)
{assert(pq);pq->head = pq->tail = NULL;pq->size = 0;
}void QueueDestroy(Quene* pq)
{assert(pq);QNode* cur = pq->head;while(cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;
}void QueuePush(Quene* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode==NULL){perror("malloc fail");return;}newnode->next = NULL;newnode->data = x;//需要判断队列中是否有元素if (pq->head==NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}void QueuePop(Quene* pq)
{assert(pq);//确保有队列assert(pq->head != NULL);//确保队列不为空if (pq->head->next==NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}int QueueSize(Quene* pq)
{assert(pq);return pq->size;
}bool QueueEmpty(Quene* pq)
{assert(pq);return pq->size==0;
}QDataType QueueFront(Quene* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->head->data;
}QDataType QueueBack(Quene* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->tail->data;
}

Queue.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>typedef struct BinaryTreeNode* QDataType;//单个节点
typedef struct QueneNode
{struct QueneNode* next;QDataType data;
}QNode;//整个队列
typedef struct Quene
{QNode* head;QNode* tail;int size;
}Quene;//初始化
void QueueInit(Quene* pq);
//销毁
void QueueDestroy(Quene* pq);//入队
void QueuePush(Quene* pq, QDataType x);
//出队
void QueuePop(Quene* pq);//计算队列中元素的个数
int QueueSize(Quene* pq);
//判断队列是否为空
bool QueueEmpty(Quene* pq);//队列中的队头元素
QDataType QueueFront(Quene* pq);
//队列中的队尾元素
QDataType QueueBack(Quene* pq);

相关文章:

数据结构-二叉树

数据结构-二叉树 二叉树的概念二叉树的遍历分类 建立二叉树&#xff0c;并遍历二叉树的最小单元二叉树的最小单元初始化初始化二叉树前序遍历的实现中序遍历的实现后序遍历的实现计算节点的个数计算树的深度求第k层的个数查找二叉树的元素分层遍历 全部代码如下 二叉树的概念 二…...

Open3D 进阶(4)高斯混合点云聚类

目录 一、算法原理1、原理概述2、实现流程3、参考文献二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。爬虫网站自重。 一、算法原理 1、原理概述 高斯混合聚类(GMM)算法假设数据点是由一个或多个高斯分布生成的,并通过最大似然估计的方法来估计每个簇…...

计算机组成和IO

文章目录 计组和Epoll&#xff1a;计算机组成原理&#xff1a;网络数据接收的流程&#xff1a;内核如何管理socket以及状态的更新select系统调用的复杂度epoll的et和lt模式及java的选择 国内访问chatai就可以 https://aiweb.douguguo.com/?typeadd计组和Epoll&#xff1a; 计…...

STM32CUBUMX配置RS485 modbus STM32(从机)亲测可用

———————————————————————————————————— ⏩ 大家好哇&#xff01;我是小光&#xff0c;嵌入式爱好者&#xff0c;一个想要成为系统架构师的大三学生。 ⏩最近在开发一个STM32H723ZGT6的板子&#xff0c;使用STM32CUBEMX做了很多驱动&#x…...

系统设计类题目汇总

1 设计一个系统统计当前时刻北京用户在线人数 【Redis】位图以及位图的使用场景(统计在线人数和用户在线状态) 1.1 方案一&#xff1a; 在用户登录时&#xff0c;使用 Redis SET 将用户 ID 添加到一个特定的键&#xff08;例如 “online:beijing”&#xff09;。用户退出时&…...

css滚动条样式指南

css滚动条样式指南 滚动条是网页设计中经常被忽视的元素。虽然它看起来像是一个小细节&#xff0c;但它在网站导航中起着至关重要的作用。默认的滚动条可能看起来不合适&#xff0c;有损整体美观。本文将介绍如何使用 CSS 自定义滚动条。 在 Chrome、Edge 和 Safari 中设置滚…...

vue子组件修改父组件传递的变量(自定义日期时间组件,时间间隔为15分钟或者一个小时)

vue子组件修改父组件传递的变量 子组件不能直接修改父组件变量的值&#xff0c;但是可以通过调用父组件的方法来修改。 实现步骤 在父组件声明变量 export default {data() {return {startTime:"",......},......} }在父组件使用子组件并传递数据&#xff0c;修改…...

【PyTorch】nn.Conv2d函数详解

nn.Conv2d 是 PyTorch 中的一个卷积层&#xff0c;用于实现二维卷积操作 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue, padding_modezeros, deviceNone, dtypeNone )参数解释 in_channels&#xff1a;输入的通…...

数智保险 创新未来 | GBASE南大通用亮相中国保险科技应用高峰论坛

本届峰会以“数智保险 创新未来”为主题&#xff0c;GBASE南大通用携新一代创新数据库产品及金融信创解决方案精彩亮相&#xff0c;与国内八百多位保险公司高管和众多保险科技公司技术专家&#xff0c;就保险领域数字化的创新应用及生态建设、新一代技术突破及发展机遇、前沿科…...

分布式天梯图算法在 Redis 图数据库中的应用

分布式天梯图算法在 Redis 图数据库中的应用 一、简介1 天梯图算法2 天梯图算法在Redis的应用 二、Redis分布式天梯图算法设计与优化1 基于天梯图的分布式算法设计2 多节点扩展与负载均衡优化3 数据存储方案与压缩策略 三、技术实现3.1 系统架构设计3.2 技术选型3.3 关键实现细…...

观察者模式——对象间的联动

1、简介 1.1、概述 在软件系统中&#xff0c;有些对象之间也存在类似交通信号灯和汽车之间的关系。一个对象的状态或行为的变化将导致其他对象的状态或行为也发生改变&#xff0c;它们之间将产生联动&#xff0c;正所谓“触一而牵百发”。为了更好地描述对象之间存在的这种一…...

【雕爷学编程】Arduino动手做(189)---特别苗条,使用微波传感器控制的纤细小车

装修屋子&#xff0c;找了一段墙面布线槽&#xff0c;外槽宽度只有23毫米&#xff0c;截取一段长为24厘米&#xff0c;尝试做个苗条小车 先在线槽上安装了二只N20小电机 装上二个快餐盒盖做轮子 测试一下使用3.7V锂电池的动力系统&#xff08;视频&#xff09; https://v.youk…...

机器学习基础算法及其实现

线性回归 知识点&#xff1a; 1. 线性回归模型可以使用不同的目标函数&#xff0c;最常用的是最小二乘法、最小绝对值法和最大似然法。 2. 在最小二乘法中&#xff0c;目标是最小化实际值与预测值之间的误差平方和&#xff0c;这可以通过求导数等方法来求解。 3. 在最小绝对值…...

docker安装MinIO

简介 Minio 是一个面向对象的简单高性能存储服务。使用 Go 语言编写&#xff0c;性能高、具有跨平台性。 Minio 官网为&#xff1a;https://min.io &#xff0c;有一个中文站点&#xff0c;单内容更新不是很及时&#xff0c;建议从原始官网学习。 本文采用 Docker 安装&…...

第5章 运算符、表达式和语句

本章介绍以下内容&#xff1a; 关键字&#xff1a;while、typedef 运算符&#xff1a;、-、*、/、%、、--、(类型名) C语言的各种运算符&#xff0c;包括用于普通数学运算的运算符 运算符优先级以及语句、表达式的含义 while循环 复合语句、自动类型转换和强制类型转换 如何编写…...

24考研数据结构-图的存储结构邻接矩阵

目录 6.3 储存结构&#xff08;邻接表表示法&#xff09;1. 储存方式2. 结构3. 图的邻接表存储表示&#xff08;算法&#xff09;4. 结论5. 邻接矩阵和邻接表的对比邻接矩阵优点&#xff1a;缺点&#xff1a; 邻接表优点&#xff1a;缺点&#xff1a; 邻接矩阵与邻接表的关系 6…...

在线推算两个日期相差天数的计算器

具体请前往&#xff1a;在线推算两个日期相差天数的计算器...

Spring源码解析(七):bean后置处理器AutowiredAnnotationBeanPostProcessor

Spring源码系列文章 Spring源码解析(一)&#xff1a;环境搭建 Spring源码解析(二)&#xff1a;bean容器的创建、默认后置处理器、扫描包路径bean Spring源码解析(三)&#xff1a;bean容器的刷新 Spring源码解析(四)&#xff1a;单例bean的创建流程 Spring源码解析(五)&…...

【C#学习笔记】引用类型(1)

文章目录 引用类型class匿名类 记录引用相等和值相等record声明 接口delegate 委托合并委托/多路广播委托 引用类型 引用类型的变量存储对其数据&#xff08;对象&#xff09;的引用&#xff0c;而值类型的变量直接包含其数据。 对于引用类型&#xff0c;两种变量可引用同一对…...

STM32CubeMX+VSCODE+EIDE+RT-THREAD 工程创建

Eide环境搭建暂且不表&#xff0c;后续补充。主要记录下Vscode环境下 创建Rt-thread工程的过程。分别介绍STM32CubeMX添加rtt支持包的方式和手动添加rtt kernel方式。STM32CubeMX生成工程的时候有"坑"&#xff0c;防止下次忘记&#xff0c;方便渡一下有缘人&#xff…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...