(深度学习,自监督、半监督、无监督!!!)神经网络修改网络结构如何下手???
修改神经网络结构,我们可以根据这个进行添加:
-
卷积层(Convolutional Layers):标准的卷积层用于提取特征并进行特征映射。
-
池化层(Pooling Layers):用于减少特征图的空间维度,例如最大池化或平均池化。
-
转置卷积层(Transposed Convolutional Layers):也称为反卷积层,用于上采样或实现转置卷积操作。
-
归一化层(Normalization Layers):如批归一化(Batch Normalization)或实例归一化(Instance Normalization),用于加速训练和提高稳定性。
-
激活函数(Activation Functions):例如ReLU、Sigmoid、Tanh等,用于引入非线性性。
-
膨胀卷积层(Dilated Convolutional Layers):用于增加卷积核的感受野,提高网络的感知能力。
-
逆残差连接(Inverse Residual Connections):类似于残差连接,但是是对特征进行逆操作。
-
胶囊网络层(Capsule Layers):用于学习特征的向量表示,适用于姿态估计等任务。
-
注意力机制层(Attention Layers):用于学习特定区域的重要性,提高网络的关注度。
-
可分离卷积层(Separable Convolutional Layers):用于减少参数量和计算量,同时保持较好的特征提取能力。
-
自注意力层(Self-Attention Layers):用于对特征图中不同位置的特征进行加权组合。
-
Skip Connection层:用于在网络中添加跳跃连接,有助于信息传递和梯度流动。
-
各种损失函数(Loss Functions):如交叉熵、均方误差、Dice Loss等,用于衡量网络输出与真实标签的差异。
上面是一部分常见的模块和层,可以根据需要设计更复杂的网络结构,并根据具体任务选择合适的模块和层。在修改网络结构时,要保持网络的有效性和稳定性,并根据数据和任务进行适当的调整和优化。
相关文章:
(深度学习,自监督、半监督、无监督!!!)神经网络修改网络结构如何下手???
修改神经网络结构,我们可以根据这个进行添加: 卷积层(Convolutional Layers):标准的卷积层用于提取特征并进行特征映射。 池化层(Pooling Layers):用于减少特征图的空间维度&…...

Codejock Task Panel ActiveX Crack
Codejock Task Panel ActiveX Crack ActiveX COM的Codejock任务面板为Windows开发人员提供了一个复杂的Office任务面板,类似于在Microsoft Office和Windows资源管理器中看到的内容。TaskPanel甚至可以用作Visual Studio风格的工具箱。 功能概述 ActiveX COM的Codejo…...

LeetCode 热题 100 JavaScript--141. 环形链表
给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(…...

文字转语音
键盘获取文字,转化为语音后保存本地 from win32com.client import Dispatch from comtypes.client import CreateObject from comtypes.gen import SpeechLib speakerDispatch(SAPI.SpVoice) speaker.Speak(请输入你想转化的文字) datainput(请输入:)#s…...
让ELK在同一个docker网络下通过名字直接访问
1. docker网络 参考https://blog.csdn.net/lihongbao80/article/details/108019773 https://www.freecodecamp.org/chinese/news/how-to-get-a-docker-container-ip-address-explained-with-examples/ 默认网络有三种,分别是 1、bridge模式,–netbridge(…...

EventBus 开源库学习(一)
一、概念 EventBus是一款在 Android 开发中使用的发布-订阅事件总线框架,基于观察者模式,将事件的接收者和发送者解耦,简化了组件之间的通信,使用简单、效率高、体积小。 一句话:用于Android组件间通信的。 二、原理…...
车载以太网SOME/IP的个人总结
如何实现CAN-SOME/IP通信路由测试 (qq.com) AutoSAR SOMEIP与SOC vsomeip通讯 (qq.com) 利用commonAPI和vSomeip对数据进行序列化 (qq.com) Vector - CANoe - VCDL与SomeIP (qq.com) 使用Wireshark 查看SOMEIP的方法 (qq.com) 基于AutoSAR的车载以太网测试 - SOMEIP之ECU做…...

vue2.29-Vue3跟vue2的区别
1、vue3介绍 更新(和重写)Vue的主要版本时,主要考虑两点因素:首先是新的JavaScript语言特性在主流浏览器中的受支持水平;其次是当前代码库中随时间推移而逐渐暴露出来的一些设计和架构问题。 相较于vue2,vu…...
【深度学习】分类和分割常见损失函数
分类 分类是一种监督机器学习任务,其中训练模型来预测给定输入数据点的类或类别。分类旨在学习从输入特征到特定类或类别的映射。 有不同的分类任务,例如二元分类、多类分类和多标签分类。 二元分类是一项训练模型来预测两个类别之一的任务,…...

Redhat Linux 安装MySQL安装手册
Redhat安装MySQL安装手册 1 下载2 上传服务器、解压并安装3 安装安装过程1:MySQL-shared-5.6.51-1.el7.x86_64.rpm安装过程2:MySQL-shared-compat-5.6.51-1.el7.x86_64.rpm安装过程3:MySQL-server-5.6.51-1.el7.x86_64.rpm安装过程4ÿ…...
题目:2303.计算应缴税款总额
题目来源: leetcode题目,网址:2303. 计算应缴税款总额 - 力扣(LeetCode) 解题思路: 按要求计算即可。注意最多产生 n1 个不同区间内的税款即可。 解题代码: class Solution {public doub…...
Kotlin 1.9.0 发布:带来多项新特性,改进 Multiplatform/Native 支持
新特性 Kotlin 的最新版本引入了许多新的语言特性,包括用于开放范围的…<操作符、扩展正则表达式等。此外,它还改进了 Kotlin Multiplatform 和 Kotlin/Native 支持。 Kotlin 1.9 稳定了与枚举类关联的 entries 属性,它会返回所定义的枚…...

接口测试——认知(一)
目录 引言 环境准备 1. 为什么要进行接口测试 2. 什么是接口 3. 接口测试与功能测试的区别 引言 为什么要做接口自动化测试? 在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。 但接…...
剑指 Offer 10- I. 斐波那契数列
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下: F(0) 0, F(1) 1 F(N) F(N - 1) F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始&am…...

洪水填充算法详解
😜作 者:是江迪呀✒️本文关键词:算法、前端、JavaScript、HTML、洪水填充算法☀️每日 一言:不以物喜,不以己悲 一、前言 当象一个容器中注水时,无论容器的结构如何复杂,注入的水…...

ubuntu18.04安装docker及docker基本命令的使用
官网安装步骤:https://docs.docker.com/desktop/install/ubuntu/ docker快速入门教程 Ubuntu-Docker安装和使用 docker官网 docker-hub仓库 1、常用指令 (1)镜像操作 # ############################# 以nginx为例 docker images docker p…...

DataWhale 机器学习夏令营第二期——AI量化模型预测挑战赛 学习记录
DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.06)1. 问题建模1.1 赛事数据数据集情况数据中缺失值类别和数值特征的基本分布 1.2 评价指标中间价的计算方式价格移动方向说明 1.3 线下验证 DataWhale 机器学习夏令营第二期 ——AI量化模型预测挑战赛 已跑通baseline&…...

简单认识ELK日志分析系统
一. ELK日志分析系统概述 1.ELK 简介 ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。 好处: (1)提高安全…...
【算法笔记】深度优先遍历-解决排列组合问题-
深度优先遍历-解决排列组合问题 问题1: 假设袋子里有编号为1,2,…,m这m个球。现在每次从袋子中取一个球记下编号,放回袋中再取,取n次作为一组,枚举所有可能的情况。 分析: 每一次取都有m种可能的情况,因此…...

【雕爷学编程】Arduino动手做(184)---快餐盒盖,极低成本搭建机器人实验平台2
吃完快餐粥,除了粥的味道不错之外,我对个快餐盒的圆盖子产生了兴趣,能否做个极低成本的简易机器人呢?也许只需要二十元左右 知识点:轮子(wheel) 中国词语。是用不同材料制成的圆形滚动物体。简…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...