(深度学习,自监督、半监督、无监督!!!)神经网络修改网络结构如何下手???
修改神经网络结构,我们可以根据这个进行添加:
-
卷积层(Convolutional Layers):标准的卷积层用于提取特征并进行特征映射。
-
池化层(Pooling Layers):用于减少特征图的空间维度,例如最大池化或平均池化。
-
转置卷积层(Transposed Convolutional Layers):也称为反卷积层,用于上采样或实现转置卷积操作。
-
归一化层(Normalization Layers):如批归一化(Batch Normalization)或实例归一化(Instance Normalization),用于加速训练和提高稳定性。
-
激活函数(Activation Functions):例如ReLU、Sigmoid、Tanh等,用于引入非线性性。
-
膨胀卷积层(Dilated Convolutional Layers):用于增加卷积核的感受野,提高网络的感知能力。
-
逆残差连接(Inverse Residual Connections):类似于残差连接,但是是对特征进行逆操作。
-
胶囊网络层(Capsule Layers):用于学习特征的向量表示,适用于姿态估计等任务。
-
注意力机制层(Attention Layers):用于学习特定区域的重要性,提高网络的关注度。
-
可分离卷积层(Separable Convolutional Layers):用于减少参数量和计算量,同时保持较好的特征提取能力。
-
自注意力层(Self-Attention Layers):用于对特征图中不同位置的特征进行加权组合。
-
Skip Connection层:用于在网络中添加跳跃连接,有助于信息传递和梯度流动。
-
各种损失函数(Loss Functions):如交叉熵、均方误差、Dice Loss等,用于衡量网络输出与真实标签的差异。
上面是一部分常见的模块和层,可以根据需要设计更复杂的网络结构,并根据具体任务选择合适的模块和层。在修改网络结构时,要保持网络的有效性和稳定性,并根据数据和任务进行适当的调整和优化。
相关文章:
(深度学习,自监督、半监督、无监督!!!)神经网络修改网络结构如何下手???
修改神经网络结构,我们可以根据这个进行添加: 卷积层(Convolutional Layers):标准的卷积层用于提取特征并进行特征映射。 池化层(Pooling Layers):用于减少特征图的空间维度&…...
Codejock Task Panel ActiveX Crack
Codejock Task Panel ActiveX Crack ActiveX COM的Codejock任务面板为Windows开发人员提供了一个复杂的Office任务面板,类似于在Microsoft Office和Windows资源管理器中看到的内容。TaskPanel甚至可以用作Visual Studio风格的工具箱。 功能概述 ActiveX COM的Codejo…...
LeetCode 热题 100 JavaScript--141. 环形链表
给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(…...
文字转语音
键盘获取文字,转化为语音后保存本地 from win32com.client import Dispatch from comtypes.client import CreateObject from comtypes.gen import SpeechLib speakerDispatch(SAPI.SpVoice) speaker.Speak(请输入你想转化的文字) datainput(请输入:)#s…...
让ELK在同一个docker网络下通过名字直接访问
1. docker网络 参考https://blog.csdn.net/lihongbao80/article/details/108019773 https://www.freecodecamp.org/chinese/news/how-to-get-a-docker-container-ip-address-explained-with-examples/ 默认网络有三种,分别是 1、bridge模式,–netbridge(…...
EventBus 开源库学习(一)
一、概念 EventBus是一款在 Android 开发中使用的发布-订阅事件总线框架,基于观察者模式,将事件的接收者和发送者解耦,简化了组件之间的通信,使用简单、效率高、体积小。 一句话:用于Android组件间通信的。 二、原理…...
车载以太网SOME/IP的个人总结
如何实现CAN-SOME/IP通信路由测试 (qq.com) AutoSAR SOMEIP与SOC vsomeip通讯 (qq.com) 利用commonAPI和vSomeip对数据进行序列化 (qq.com) Vector - CANoe - VCDL与SomeIP (qq.com) 使用Wireshark 查看SOMEIP的方法 (qq.com) 基于AutoSAR的车载以太网测试 - SOMEIP之ECU做…...
vue2.29-Vue3跟vue2的区别
1、vue3介绍 更新(和重写)Vue的主要版本时,主要考虑两点因素:首先是新的JavaScript语言特性在主流浏览器中的受支持水平;其次是当前代码库中随时间推移而逐渐暴露出来的一些设计和架构问题。 相较于vue2,vu…...
【深度学习】分类和分割常见损失函数
分类 分类是一种监督机器学习任务,其中训练模型来预测给定输入数据点的类或类别。分类旨在学习从输入特征到特定类或类别的映射。 有不同的分类任务,例如二元分类、多类分类和多标签分类。 二元分类是一项训练模型来预测两个类别之一的任务,…...
Redhat Linux 安装MySQL安装手册
Redhat安装MySQL安装手册 1 下载2 上传服务器、解压并安装3 安装安装过程1:MySQL-shared-5.6.51-1.el7.x86_64.rpm安装过程2:MySQL-shared-compat-5.6.51-1.el7.x86_64.rpm安装过程3:MySQL-server-5.6.51-1.el7.x86_64.rpm安装过程4ÿ…...
题目:2303.计算应缴税款总额
题目来源: leetcode题目,网址:2303. 计算应缴税款总额 - 力扣(LeetCode) 解题思路: 按要求计算即可。注意最多产生 n1 个不同区间内的税款即可。 解题代码: class Solution {public doub…...
Kotlin 1.9.0 发布:带来多项新特性,改进 Multiplatform/Native 支持
新特性 Kotlin 的最新版本引入了许多新的语言特性,包括用于开放范围的…<操作符、扩展正则表达式等。此外,它还改进了 Kotlin Multiplatform 和 Kotlin/Native 支持。 Kotlin 1.9 稳定了与枚举类关联的 entries 属性,它会返回所定义的枚…...
接口测试——认知(一)
目录 引言 环境准备 1. 为什么要进行接口测试 2. 什么是接口 3. 接口测试与功能测试的区别 引言 为什么要做接口自动化测试? 在当前互联网产品迭代频繁的背景下,回归测试的时间越来越少,很难在每个迭代都对所有功能做完整回归。 但接…...
剑指 Offer 10- I. 斐波那契数列
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下: F(0) 0, F(1) 1 F(N) F(N - 1) F(N - 2), 其中 N > 1. 斐波那契数列由 0 和 1 开始&am…...
洪水填充算法详解
😜作 者:是江迪呀✒️本文关键词:算法、前端、JavaScript、HTML、洪水填充算法☀️每日 一言:不以物喜,不以己悲 一、前言 当象一个容器中注水时,无论容器的结构如何复杂,注入的水…...
ubuntu18.04安装docker及docker基本命令的使用
官网安装步骤:https://docs.docker.com/desktop/install/ubuntu/ docker快速入门教程 Ubuntu-Docker安装和使用 docker官网 docker-hub仓库 1、常用指令 (1)镜像操作 # ############################# 以nginx为例 docker images docker p…...
DataWhale 机器学习夏令营第二期——AI量化模型预测挑战赛 学习记录
DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.06)1. 问题建模1.1 赛事数据数据集情况数据中缺失值类别和数值特征的基本分布 1.2 评价指标中间价的计算方式价格移动方向说明 1.3 线下验证 DataWhale 机器学习夏令营第二期 ——AI量化模型预测挑战赛 已跑通baseline&…...
简单认识ELK日志分析系统
一. ELK日志分析系统概述 1.ELK 简介 ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。 好处: (1)提高安全…...
【算法笔记】深度优先遍历-解决排列组合问题-
深度优先遍历-解决排列组合问题 问题1: 假设袋子里有编号为1,2,…,m这m个球。现在每次从袋子中取一个球记下编号,放回袋中再取,取n次作为一组,枚举所有可能的情况。 分析: 每一次取都有m种可能的情况,因此…...
【雕爷学编程】Arduino动手做(184)---快餐盒盖,极低成本搭建机器人实验平台2
吃完快餐粥,除了粥的味道不错之外,我对个快餐盒的圆盖子产生了兴趣,能否做个极低成本的简易机器人呢?也许只需要二十元左右 知识点:轮子(wheel) 中国词语。是用不同材料制成的圆形滚动物体。简…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
Tauri2学习笔记
教程地址:https://www.bilibili.com/video/BV1Ca411N7mF?spm_id_from333.788.player.switch&vd_source707ec8983cc32e6e065d5496a7f79ee6 官方指引:https://tauri.app/zh-cn/start/ 目前Tauri2的教程视频不多,我按照Tauri1的教程来学习&…...
