当前位置: 首页 > news >正文

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenet+faiss开发构建人脸识别系统》中,我们实践了基于facenet和faiss的人脸识别系统开发,基于facenet后续提出来很多新的改进的网络模型,arcFace就是其中一款优秀的网络模型,本文的整体开发实现流程与前文相同,只是在深度学习模型节点上将facenet替换为了arcFace网络模型,整体流程示意图如下所示:

 

整体的思路还是比较清晰明了的。

接下来先简单回顾一下相关技术原理。

ArcFace是一种人脸识别模型,它是基于深度学习的卷积神经网络构建的。ArcFace模型在人脸识别领域具有很高的准确性和可靠性,广泛应用于人脸识别技术和安全系统中。

ArcFace模型的核心思想是通过学习将人脸图像映射到一个高维特征空间中的稠密特征表示。它采用余弦距离作为判别指标,使得同一个人的人脸特征向量之间的余弦距离较小,不同人的人脸特征向量之间的余弦距离较大。通过训练过程,模型可以学习到人脸的判别性特征,实现人脸之间的区分和识别。

ArcFace模型的优点有以下几个方面:

  1. 准确性高:ArcFace在常见的人脸识别任务中取得了非常好的性能,能够实现高准确性的人脸匹配和识别。

  2. 抗干扰能力强:ArcFace模型在面对光照变化、表情变化、遮挡等干扰因素时,仍能保持较高的稳定性和可靠性,对人脸图像的变化有较好的适应性。

  3. 特征嵌入明显:ArcFace模型通过学习得到的人脸特征向量在高维空间中有较明显的嵌入效果,同一个人的人脸特征向量距离较近,不同人的特征向量距离较远,增加了模型的判别力。

然而,ArcFace模型也存在一些缺点:

  1. 复杂性高:ArcFace模型相比其他简单的人脸识别模型,比如FaceNet,模型结构更加复杂,需要更大的计算资源和更长的训练时间。

  2. 数据依赖性强:ArcFace模型的性能与训练数据的质量和数量密切相关,需要大规模的人脸数据集进行训练,从而使模型具有更好的泛化能力。

  3. 隐私问题:由于ArcFace模型具有较强的人脸识别能力,潜在的隐私问题也随之出现。在应用和部署过程中,需要遵循隐私保护的原则和规定。

ArcFace模型以其高准确性和鲁棒性在人脸识别领域占据重要地位,但在实际应用中也需要考虑到模型复杂性、数据依赖性和隐私问题。

Faiss是一种用于高效相似性搜索的库,由Facebook人工智能研究实验室开发。它基于近似最近邻(Approximate Nearest Neighbor, ANN)算法,旨在解决大规模数据集的相似性搜索问题。Faiss可以在GPU和CPU上运行,并提供了多种近似搜索算法和索引结构。

Faiss的主要构建原理是使用索引结构对数据进行预处理,以便于在搜索时快速定位到相似的数据点。下面是Faiss的主要特点和优势:

高效:Faiss通过高度优化的算法和索引结构,实现了非常高效的相似性搜索。它可以处理包含数百万或上亿个数据点的大规模数据集。

支持多种索引算法:Faiss提供多种索引算法,包括快速扫描、k-means、倒排文件等等。这些算法可以针对不同的数据特点和搜索需求选择最合适的索引结构,以提高搜索性能。

可扩展性:Faiss可以在单个GPU或多个GPU上运行,并且支持分布式计算。这使得它能够有效地处理大规模数据集并实现快速搜索。

索引更新和存储:Faiss允许动态地更新索引结构,可以添加、删除或修改数据点。此外,Faiss还提供了存储和加载索引结构的功能,方便在不同环境中使用。

多种语言支持:Faiss支持多种编程语言接口,如C++、Python等,使得它在不同的开发环境下都易于使用和集成。

Faiss算法的一些缺点包括:

近似性:Faiss提供的是近似最近邻搜索,并不保证精确的最近邻搜索结果。虽然近似搜索能够在处理大规模数据时显著提高搜索速度,但在对结果的准确性有严格要求的应用中,可能需要使用精确搜索算法。

参数调优:Faiss中的索引算法有多个参数需要调整,以获得最佳的搜索性能。对于不熟悉Faiss的用户来说,可能需要一些实验和调优才能找到最优的配置。

存储需求:基于索引结构的相似性搜索常常需要占用较大的存储空间,尤其是当数据集非常大时。这可能对存储资源造成压力。

接下来我们来实现自己的想法,arcFace模型可以直接使用官方开源项目即可,这里我就不再自己训练了,直接使用了网上开源的模型,自己搜索就有很多的,选择合适自己使用的即可,接下来就是要实现人脸向量数据库的构建,核心实现如下所示:

def batch2Vec(picDir="datasets/", saveDir="vector/"):"""批量数据向量化处理"""if not os.path.exists(saveDir):os.makedirs(saveDir)feature=[]person={}count=0for one_person in os.listdir(picDir):oneDir=picDir+one_person+"/"print("one_person: ", one_person, ", one_num: ", len(os.listdir(oneDir)), ", count: ", count)for one_pic in os.listdir(oneDir):one_path=oneDir+one_picone_vec=sinleImg2Vec(pic_path=one_path)if one_person in person:person[one_person].append([one_pic, one_vec])else:person[one_person]=[[one_pic, one_vec]]feature.append([one_path, one_vec])count+=1print("feature_length: ", len(feature))with open(saveDir+"faceDB.json", "w") as f:f.write(json.dumps(feature))with open(saveDir+"person.json", "w") as f:f.write(json.dumps(person))

终端计算输出如下所示:

 向量数据计算完成如下所示:

 

之后我们就可以基于人脸向量数据库来构建faiss索引,输入单个查询向量来进行计算了,核心实现如下所示:

#检索计算
start=time.time()               
distances, indexs = index.search(query, topK)
print("distances_shape: ", distances.shape)
print("indexs_shape: ", indexs.shape)
end=time.time()
delta=round(end-start, 4)
#对比可视化
plt.clf()
plt.figure(figsize=(36,6))
plt.subplot(1,6,1)
plt.imshow(Image.open(pic_path))
plt.title("OriginalImage\nSearchTime: "+str(delta)+"s")
indexs=indexs.tolist()[0]
print("indexs: ", indexs)
for i in range(len(indexs)):one_ind=indexs[i]plt.subplot(1,6,i+2)plt.imshow(Image.open(images[one_ind]))one_dis= distance(query, vectors[one_ind])plt.title("Top"+str(i)+" SearchImage\nDis is: "+str(round(one_dis, 4)))
plt.savefig("compare.jpg")

同前文是一致的,这里也是保证了接口数据的一致,所以faiss模块的逻辑可以复用。

接下来看下实际检索效果:
【查询输入】

 【检索输出】

 【查询输入】

 【检索输出】

  【查询输入】

 【检索输出】

 【查询输入】

 【检索输出】

  【查询输入】

 【检索输出】

 整体来看效果还是非常不错的,而且整体的时耗也是很出色的。

下一篇文章中,我会对faiss的时耗进行实验分析。

相关文章:

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenetfaiss开发构建人脸识别系统》中,我们实践了基于facenet和faiss的人脸识别系统开发,基于facenet后续提出来很多新的改进的网络模型,arcFace就是其中一款优秀的网络模型,本文的整体开发实现流程与前文相同…...

C#设计模式(15)命令模式(Command Pattern)

命令模式(Command Pattern) 命令模式是一种数据驱动的设计模式,属于行为型模式类别。请求被包装在一个对象中作为命令,并传递给调用对象。调用对象寻找可以处理该命令的合适对象,并将命令传递给相应的对象&#xff0c…...

快速排序和qsort函数详解详解qsort函数

💕是非成败转头空,青山依旧在,几度夕阳红💕 作者:Mylvzi 文章主要内容:快速排序和qsort函数详解 前言: 我们之前学习过冒泡排序,冒泡排序尽管很方便,但也存在一些局限性…...

搭建 elasticsearch8.8.2 伪集群 windows

下载windows 版本 elasticsearch8.8.2 以下链接为es 历史版本下载地址: Past Releases of Elastic Stack Software | Elastic windows 单节点建立方案: 下载安装包 elasticsearch-8.8.2-windows-x86_64.zip https://artifacts.elastic.co/download…...

C++ 运算符重载为成员函数

运算符重载实质上就是函数重载,重载为成员函数,他就可以自由访问本类的数据成员。实际使用时,总是通过该类的某个对象来访问重载的运算符。 如果是双目运算符,左操作数是对象本身的数据,由this指针指出,右…...

51单片机程序烧录教程

STC烧录步骤 (1)STC单片机烧录方式采用串口进行烧录程序,连接的方式如下图: (2)所以需要先确保USB转串口驱动是识别到,且驱动运行正常;是否可通过电脑的设备管理器查看驱动是否正常…...

Linux C++ 链接数据库并对数据库进行一些简单的操作

一.引言(写在之前) 在我们进行网络业务代码书写的时候,我们总是避免对产生的数据进行增删改查,为此,本小博主在这里简历分享一下自己在Linux中C语言与数据之间交互的代码的入门介绍。 二.代码书写以及一些变量和函数的…...

Linux进程间通信--msgsnd函数的作用

msgsnd函数用于将消息发送到消息队列中。它的原型如下: int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg); 参数解释: msqid:消息队列标识符,由msgget函数返回。msgp:指向要发送的消息的指针&…...

P1629 邮递员送信(最短路)(内附封面)

邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点 1 1 1。他总共要送 n − 1 n-1 n−1 样东西,其目的地分别是节点 2 2 2 到节点 n n n。由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有 m m m 条道路。这…...

网络安全--原型链污染

目录 1.什么是原型链污染 2.原型链三属性 1)prototype 2)constructor 3)__proto__ 4)原型链三属性之间关系 3.JavaScript原型链继承 1)分析 2)总结 3)运行结果 4.原型链污染简单实验 1)实验一 2&#xff0…...

Harbor企业镜像仓库部署

目录 一、Harbor 架构构成 二、部署harbor环境 1、安装docker-ce(所有主机) 2、阿里云镜像加速器 3、部署Docker Compose 服务 4、部署 Harbor 服务 5、启动并安装 Harbor 6、创建一个新项目 三、客户端上传镜像 1、在 Docker 客户端配置操作如下…...

【AI】《动手学-深度学习-PyTorch版》笔记(十一):分类问题-softmax回归

AI学习目录汇总 1、线性回归和softmax回归的区别 1)连续值与离散值 线性回归模型,适用于输出为连续值的情景。 softmax回归模型,适用于输出为离散值的情景。例如图像类别,就需要对离散值进行预测。softmax回归模型引入了softmax运算,使输出更适合离散值的预测和训练。 …...

【排序算法略解】(十种排序的稳定性,时间复杂度以及实现思想)(含代码)(完工于2023.8.3)

文章目录 1、冒泡排序/选择排序/插入排序冒泡排序(Bubble Sort)选择排序(Selection Sort)插入排序(Insertion Sort) 2、希尔排序(Shells Sort)3、快速排序(Quick Sort)4、堆排序(Heap Sort)5、归并排序(Merge Sort)6、桶排序/计数排序/基数排序桶排序(Bucket sort)计数排序(Cou…...

学编程实用网站

牛客网:面试刷题和面试经验分享的网站牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网 (nowcoder.com)https://www.nowcoder.com/ 慕课网:在线学习 慕课网-程序员的梦工厂 (imooc.com)https://www.imooc.com/ …...

Camunda 7.x 系列【5】 员工请假流程模型

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 概述2. 模型设计2.1 基础配置2.2 启动事件2.3 填写请假单2.4 上级领导审批3.5 经理审批3…...

【C++从0到王者】第十七站:手把手教你写一个stack和queue及deque的底层原理

文章目录 一、stack1.利用适配器2.栈的实现 二、queue三、deque1.deque介绍2.deque的接口3.deque的基本使用4.deque的效率5.deque的原理 一、stack 1.利用适配器 我们不可能写了一份数组栈以后,还要在手写一个链式栈,这样显得太冗余了。于是我们可以利…...

ffmpeg.c源码与函数关系分析

介绍 FFmpeg 是一个可以处理音视频的软件,功能非常强大,主要包括,编解码转换,封装格式转换,滤镜特效。FFmpeg支持各种网络协议,支持 RTMP ,RTSP,HLS 等高层协议的推拉流&#xff0c…...

GD32F103待机模式与唤醒

GD32F103待机模式与唤醒,本程序使用RTC报警唤醒。 电源管理单元有3种省电模式:睡眠模式,深度睡眠模式和待机模式; 进入待机模式的步骤如下: 若需要RTC闹钟输出,则需要将TAMPER-RTC映射到PC13引脚; 若需要LXTAL晶振32.768KHz&…...

【Linux初阶】基础IO - 动静态库 | 初识、生成、链接、加载

🌟hello,各位读者大大们你们好呀🌟 🍭🍭系列专栏:【Linux初阶】 ✒️✒️本篇内容:动静态库初识,库的含义,静态库的生成与链接,gcc/g默认链接方式&#xff0c…...

为Git仓库设置签名信息

前言 在首次使用git版本库或创建新的仓库时,需要为其仓库设定管理员和管理员邮箱。 在为仓库添加管理员和邮箱地址时,有以下两种情况: (1)全局模式:首次创建,后面做为默认使用,对当…...

iOS开发Swift开发UI页面链式调用库推荐

首页链接 https://github.com/zhiguangqiao/ChainableUIKit 安装方法 pod ChainableUIKit调用片段 UIButton import ChainableUIKitprivate let button UIButton().chain.setTitleColor(.init(hex: "#9583EB"), state: .normal).setTitle("全部视频",…...

ClickHouse SQL与引擎--基本使用(一)

1.查看所有的数据库 show databases; 2.创建库 CREATE DATABASE zabbix ENGINE Ordinary; ATTACH DATABASE ck_test ENGINE Ordinary;3.创建本地表 CREATE TABLE IF NOT EXISTS test01(id UInt64,name String,time UInt64,age UInt8,flag UInt8 ) ENGINE MergeTree PARTI…...

2023-08-07力扣今日七题-好题

链接: 剑指 Offer 11. 旋转数组的最小数字 154. 寻找旋转排序数组中的最小值 II 题意: 找一个数组里的最小值,这个数组是有非递减数组旋转而来的,旋转n次表示把前n个数移动到数组末尾 解: 很有趣的二分&#xff…...

支持多用户协同的思维导图TeamMapper

什么是 TeamMapper ? TeamMapper 是基于 Mindmapp 开发的用于绘制思维导图的 Web 应用程序。它使得思维导图变得简单,你可以托管并创建您自己的思维导图。与您的团队分享您的思维导图会议并在思维导图上进行协作。 软件特点: 创建&#xff1…...

【Vue】Parsing error: No Babel config file detected for ... vue

报错 Parsing error: No Babel config file detected for E:\Study\Vue网站\实现防篡改的水印\demo02\src\App.vue. Either disable config file checking with requireConfigFile: false, or configure Babel so that it can find the config files.             …...

2023-08-07力扣今日五题

链接: 剑指 Offer 53 - II. 0~n-1中缺失的数字 题意: 如题 解: 长度n的递增数组里,要找0到n中没出现的那个数字,那么出现的下标是0到n-1,一一对应即可,都出现了就是n没有 实际…...

ETHERCAT转PROFIBUS连接到300plc的配置方法

由于捷米JM-DP-ECT,是自主研发的一款PROFIBUS从站功能的通讯网关,它的主要功能是将ETHERCAT设备接入到PROFIBUS网络中生产环境比较复杂有多个设备采用不同的协议这极大的阻碍了,各个设备的数据互通。 JM-DP-ECT这个小小的网关可不简单&#x…...

Spring Boot配置文件与日志文件

1. Spring Boot 配置文件 我们知道, 当我们创建一个Spring Boot项目之后, 就已经有了配置文件存在于目录结构中. 1. 配置文件作用 整个项目中所有重要的数据都是在配置文件中配置的,比如: 数据库的连接信息 (包含用户名和密码的设置) ;项目的启动端口;第三方系统的调…...

可解释性分析的一些类别(草稿)(视觉)

目录 1.交互性解释 2. 本身具有解释性的模型 3.如何将可解释性分析应用到生成模型 参考文献 视觉领域从2020年开始可以分为两块,一个是图像分类,一个是图像生成。 图像分类:输入一张图片,输出语义标签,就是这张图…...

HTTPS-RSA握手

RSA握手过程 HTTPS采用了公钥加密和对称加密结合的方式进行数据加密和解密 RSA握手是HTTPS连接建立过程中的一个关键步骤,用于确保通信双方的身份验证和生成对称加密所需的密钥 通过RSA握手过程,客户端和服务器可以协商出一个共享的对称密钥,…...