当前位置: 首页 > news >正文

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenet+faiss开发构建人脸识别系统》中,我们实践了基于facenet和faiss的人脸识别系统开发,基于facenet后续提出来很多新的改进的网络模型,arcFace就是其中一款优秀的网络模型,本文的整体开发实现流程与前文相同,只是在深度学习模型节点上将facenet替换为了arcFace网络模型,整体流程示意图如下所示:

 

整体的思路还是比较清晰明了的。

接下来先简单回顾一下相关技术原理。

ArcFace是一种人脸识别模型,它是基于深度学习的卷积神经网络构建的。ArcFace模型在人脸识别领域具有很高的准确性和可靠性,广泛应用于人脸识别技术和安全系统中。

ArcFace模型的核心思想是通过学习将人脸图像映射到一个高维特征空间中的稠密特征表示。它采用余弦距离作为判别指标,使得同一个人的人脸特征向量之间的余弦距离较小,不同人的人脸特征向量之间的余弦距离较大。通过训练过程,模型可以学习到人脸的判别性特征,实现人脸之间的区分和识别。

ArcFace模型的优点有以下几个方面:

  1. 准确性高:ArcFace在常见的人脸识别任务中取得了非常好的性能,能够实现高准确性的人脸匹配和识别。

  2. 抗干扰能力强:ArcFace模型在面对光照变化、表情变化、遮挡等干扰因素时,仍能保持较高的稳定性和可靠性,对人脸图像的变化有较好的适应性。

  3. 特征嵌入明显:ArcFace模型通过学习得到的人脸特征向量在高维空间中有较明显的嵌入效果,同一个人的人脸特征向量距离较近,不同人的特征向量距离较远,增加了模型的判别力。

然而,ArcFace模型也存在一些缺点:

  1. 复杂性高:ArcFace模型相比其他简单的人脸识别模型,比如FaceNet,模型结构更加复杂,需要更大的计算资源和更长的训练时间。

  2. 数据依赖性强:ArcFace模型的性能与训练数据的质量和数量密切相关,需要大规模的人脸数据集进行训练,从而使模型具有更好的泛化能力。

  3. 隐私问题:由于ArcFace模型具有较强的人脸识别能力,潜在的隐私问题也随之出现。在应用和部署过程中,需要遵循隐私保护的原则和规定。

ArcFace模型以其高准确性和鲁棒性在人脸识别领域占据重要地位,但在实际应用中也需要考虑到模型复杂性、数据依赖性和隐私问题。

Faiss是一种用于高效相似性搜索的库,由Facebook人工智能研究实验室开发。它基于近似最近邻(Approximate Nearest Neighbor, ANN)算法,旨在解决大规模数据集的相似性搜索问题。Faiss可以在GPU和CPU上运行,并提供了多种近似搜索算法和索引结构。

Faiss的主要构建原理是使用索引结构对数据进行预处理,以便于在搜索时快速定位到相似的数据点。下面是Faiss的主要特点和优势:

高效:Faiss通过高度优化的算法和索引结构,实现了非常高效的相似性搜索。它可以处理包含数百万或上亿个数据点的大规模数据集。

支持多种索引算法:Faiss提供多种索引算法,包括快速扫描、k-means、倒排文件等等。这些算法可以针对不同的数据特点和搜索需求选择最合适的索引结构,以提高搜索性能。

可扩展性:Faiss可以在单个GPU或多个GPU上运行,并且支持分布式计算。这使得它能够有效地处理大规模数据集并实现快速搜索。

索引更新和存储:Faiss允许动态地更新索引结构,可以添加、删除或修改数据点。此外,Faiss还提供了存储和加载索引结构的功能,方便在不同环境中使用。

多种语言支持:Faiss支持多种编程语言接口,如C++、Python等,使得它在不同的开发环境下都易于使用和集成。

Faiss算法的一些缺点包括:

近似性:Faiss提供的是近似最近邻搜索,并不保证精确的最近邻搜索结果。虽然近似搜索能够在处理大规模数据时显著提高搜索速度,但在对结果的准确性有严格要求的应用中,可能需要使用精确搜索算法。

参数调优:Faiss中的索引算法有多个参数需要调整,以获得最佳的搜索性能。对于不熟悉Faiss的用户来说,可能需要一些实验和调优才能找到最优的配置。

存储需求:基于索引结构的相似性搜索常常需要占用较大的存储空间,尤其是当数据集非常大时。这可能对存储资源造成压力。

接下来我们来实现自己的想法,arcFace模型可以直接使用官方开源项目即可,这里我就不再自己训练了,直接使用了网上开源的模型,自己搜索就有很多的,选择合适自己使用的即可,接下来就是要实现人脸向量数据库的构建,核心实现如下所示:

def batch2Vec(picDir="datasets/", saveDir="vector/"):"""批量数据向量化处理"""if not os.path.exists(saveDir):os.makedirs(saveDir)feature=[]person={}count=0for one_person in os.listdir(picDir):oneDir=picDir+one_person+"/"print("one_person: ", one_person, ", one_num: ", len(os.listdir(oneDir)), ", count: ", count)for one_pic in os.listdir(oneDir):one_path=oneDir+one_picone_vec=sinleImg2Vec(pic_path=one_path)if one_person in person:person[one_person].append([one_pic, one_vec])else:person[one_person]=[[one_pic, one_vec]]feature.append([one_path, one_vec])count+=1print("feature_length: ", len(feature))with open(saveDir+"faceDB.json", "w") as f:f.write(json.dumps(feature))with open(saveDir+"person.json", "w") as f:f.write(json.dumps(person))

终端计算输出如下所示:

 向量数据计算完成如下所示:

 

之后我们就可以基于人脸向量数据库来构建faiss索引,输入单个查询向量来进行计算了,核心实现如下所示:

#检索计算
start=time.time()               
distances, indexs = index.search(query, topK)
print("distances_shape: ", distances.shape)
print("indexs_shape: ", indexs.shape)
end=time.time()
delta=round(end-start, 4)
#对比可视化
plt.clf()
plt.figure(figsize=(36,6))
plt.subplot(1,6,1)
plt.imshow(Image.open(pic_path))
plt.title("OriginalImage\nSearchTime: "+str(delta)+"s")
indexs=indexs.tolist()[0]
print("indexs: ", indexs)
for i in range(len(indexs)):one_ind=indexs[i]plt.subplot(1,6,i+2)plt.imshow(Image.open(images[one_ind]))one_dis= distance(query, vectors[one_ind])plt.title("Top"+str(i)+" SearchImage\nDis is: "+str(round(one_dis, 4)))
plt.savefig("compare.jpg")

同前文是一致的,这里也是保证了接口数据的一致,所以faiss模块的逻辑可以复用。

接下来看下实际检索效果:
【查询输入】

 【检索输出】

 【查询输入】

 【检索输出】

  【查询输入】

 【检索输出】

 【查询输入】

 【检索输出】

  【查询输入】

 【检索输出】

 整体来看效果还是非常不错的,而且整体的时耗也是很出色的。

下一篇文章中,我会对faiss的时耗进行实验分析。

相关文章:

基于arcFace+faiss开发构建人脸识别系统

在上一篇博文《基于facenetfaiss开发构建人脸识别系统》中,我们实践了基于facenet和faiss的人脸识别系统开发,基于facenet后续提出来很多新的改进的网络模型,arcFace就是其中一款优秀的网络模型,本文的整体开发实现流程与前文相同…...

C#设计模式(15)命令模式(Command Pattern)

命令模式(Command Pattern) 命令模式是一种数据驱动的设计模式,属于行为型模式类别。请求被包装在一个对象中作为命令,并传递给调用对象。调用对象寻找可以处理该命令的合适对象,并将命令传递给相应的对象&#xff0c…...

快速排序和qsort函数详解详解qsort函数

💕是非成败转头空,青山依旧在,几度夕阳红💕 作者:Mylvzi 文章主要内容:快速排序和qsort函数详解 前言: 我们之前学习过冒泡排序,冒泡排序尽管很方便,但也存在一些局限性…...

搭建 elasticsearch8.8.2 伪集群 windows

下载windows 版本 elasticsearch8.8.2 以下链接为es 历史版本下载地址: Past Releases of Elastic Stack Software | Elastic windows 单节点建立方案: 下载安装包 elasticsearch-8.8.2-windows-x86_64.zip https://artifacts.elastic.co/download…...

C++ 运算符重载为成员函数

运算符重载实质上就是函数重载,重载为成员函数,他就可以自由访问本类的数据成员。实际使用时,总是通过该类的某个对象来访问重载的运算符。 如果是双目运算符,左操作数是对象本身的数据,由this指针指出,右…...

51单片机程序烧录教程

STC烧录步骤 (1)STC单片机烧录方式采用串口进行烧录程序,连接的方式如下图: (2)所以需要先确保USB转串口驱动是识别到,且驱动运行正常;是否可通过电脑的设备管理器查看驱动是否正常…...

Linux C++ 链接数据库并对数据库进行一些简单的操作

一.引言(写在之前) 在我们进行网络业务代码书写的时候,我们总是避免对产生的数据进行增删改查,为此,本小博主在这里简历分享一下自己在Linux中C语言与数据之间交互的代码的入门介绍。 二.代码书写以及一些变量和函数的…...

Linux进程间通信--msgsnd函数的作用

msgsnd函数用于将消息发送到消息队列中。它的原型如下: int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg); 参数解释: msqid:消息队列标识符,由msgget函数返回。msgp:指向要发送的消息的指针&…...

P1629 邮递员送信(最短路)(内附封面)

邮递员送信 题目描述 有一个邮递员要送东西,邮局在节点 1 1 1。他总共要送 n − 1 n-1 n−1 样东西,其目的地分别是节点 2 2 2 到节点 n n n。由于这个城市的交通比较繁忙,因此所有的道路都是单行的,共有 m m m 条道路。这…...

网络安全--原型链污染

目录 1.什么是原型链污染 2.原型链三属性 1)prototype 2)constructor 3)__proto__ 4)原型链三属性之间关系 3.JavaScript原型链继承 1)分析 2)总结 3)运行结果 4.原型链污染简单实验 1)实验一 2&#xff0…...

Harbor企业镜像仓库部署

目录 一、Harbor 架构构成 二、部署harbor环境 1、安装docker-ce(所有主机) 2、阿里云镜像加速器 3、部署Docker Compose 服务 4、部署 Harbor 服务 5、启动并安装 Harbor 6、创建一个新项目 三、客户端上传镜像 1、在 Docker 客户端配置操作如下…...

【AI】《动手学-深度学习-PyTorch版》笔记(十一):分类问题-softmax回归

AI学习目录汇总 1、线性回归和softmax回归的区别 1)连续值与离散值 线性回归模型,适用于输出为连续值的情景。 softmax回归模型,适用于输出为离散值的情景。例如图像类别,就需要对离散值进行预测。softmax回归模型引入了softmax运算,使输出更适合离散值的预测和训练。 …...

【排序算法略解】(十种排序的稳定性,时间复杂度以及实现思想)(含代码)(完工于2023.8.3)

文章目录 1、冒泡排序/选择排序/插入排序冒泡排序(Bubble Sort)选择排序(Selection Sort)插入排序(Insertion Sort) 2、希尔排序(Shells Sort)3、快速排序(Quick Sort)4、堆排序(Heap Sort)5、归并排序(Merge Sort)6、桶排序/计数排序/基数排序桶排序(Bucket sort)计数排序(Cou…...

学编程实用网站

牛客网:面试刷题和面试经验分享的网站牛客网 - 找工作神器|笔试题库|面试经验|实习招聘内推,求职就业一站解决_牛客网 (nowcoder.com)https://www.nowcoder.com/ 慕课网:在线学习 慕课网-程序员的梦工厂 (imooc.com)https://www.imooc.com/ …...

Camunda 7.x 系列【5】 员工请假流程模型

有道无术,术尚可求,有术无道,止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址:https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 概述2. 模型设计2.1 基础配置2.2 启动事件2.3 填写请假单2.4 上级领导审批3.5 经理审批3…...

【C++从0到王者】第十七站:手把手教你写一个stack和queue及deque的底层原理

文章目录 一、stack1.利用适配器2.栈的实现 二、queue三、deque1.deque介绍2.deque的接口3.deque的基本使用4.deque的效率5.deque的原理 一、stack 1.利用适配器 我们不可能写了一份数组栈以后,还要在手写一个链式栈,这样显得太冗余了。于是我们可以利…...

ffmpeg.c源码与函数关系分析

介绍 FFmpeg 是一个可以处理音视频的软件,功能非常强大,主要包括,编解码转换,封装格式转换,滤镜特效。FFmpeg支持各种网络协议,支持 RTMP ,RTSP,HLS 等高层协议的推拉流&#xff0c…...

GD32F103待机模式与唤醒

GD32F103待机模式与唤醒,本程序使用RTC报警唤醒。 电源管理单元有3种省电模式:睡眠模式,深度睡眠模式和待机模式; 进入待机模式的步骤如下: 若需要RTC闹钟输出,则需要将TAMPER-RTC映射到PC13引脚; 若需要LXTAL晶振32.768KHz&…...

【Linux初阶】基础IO - 动静态库 | 初识、生成、链接、加载

🌟hello,各位读者大大们你们好呀🌟 🍭🍭系列专栏:【Linux初阶】 ✒️✒️本篇内容:动静态库初识,库的含义,静态库的生成与链接,gcc/g默认链接方式&#xff0c…...

为Git仓库设置签名信息

前言 在首次使用git版本库或创建新的仓库时,需要为其仓库设定管理员和管理员邮箱。 在为仓库添加管理员和邮箱地址时,有以下两种情况: (1)全局模式:首次创建,后面做为默认使用,对当…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...