flink的ProcessWindowFunction函数的三种状态
背景
在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState,
每个key+每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢?
ProcessWindowFunction处理函数三种状态之间的关系:
1.getRuntimeContext.getState这个定义的状态是每个key维度的,也就是可以跨时间窗口并维持状态的
2.context.windowState()这个定义的状态是和每个key以及窗口相关的,也就是虽然key相同,但是时间窗口不同,他们的值也不一样.
3.context.globalState这个定义的状态是和每个key相关的,也就是和getRuntimeContext.getState的定义一样,可以跨窗口维护状态
验证代码如下所示:
package wikiedits.func;import org.apache.flink.api.common.state.ValueState;import org.apache.flink.api.common.state.ValueStateDescriptor;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;
import wikiedits.func.model.KeyCount;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessWindowFunctionDemo {public static void main(String[] args) throws Exception {final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 使用处理时间env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);// 并行度为1env.setParallelism(1);// 设置数据源,一共三个元素DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {@Overridepublic void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {int xxxNum = 0;int yyyNum = 0;for (int i = 1; i < Integer.MAX_VALUE; i++) {// 只有XXX和YYY两种nameString name = (0 == i % 2) ? "XXX" : "YYY";//更新aaa和bbb元素的总数if (0 == i % 2) {xxxNum++;} else {yyyNum++;}// 使用当前时间作为时间戳long timeStamp = System.currentTimeMillis();// 将数据和时间戳打印出来,用来验证数据System.out.println(String.format("source,%s, %s, XXX total : %d, YYY total : %d\n",name,time(timeStamp),xxxNum,yyyNum));// 发射一个元素,并且戴上了时间戳ctx.collectWithTimestamp(new Tuple2<String, Integer>(name, 1), timeStamp);// 每发射一次就延时1秒Thread.sleep(1000);}}@Overridepublic void cancel() {}});// 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunctionSingleOutputStreamOperator<String> mainDataStream = dataStream// 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种.keyBy(value -> value.f0)// 5秒一次的滚动窗口.timeWindow(Time.seconds(5))// 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子.process(new ProcessWindowFunction<Tuple2<String, Integer>, String, String, TimeWindow>() {// 自定义状态private ValueState<KeyCount> state;@Overridepublic void open(Configuration parameters) throws Exception {// 初始化状态,name是myStatestate = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));}public void clear(Context context){ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));contextWindowValueState.clear();}@Overridepublic void process(String s, Context context, Iterable<Tuple2<String, Integer>> iterable,Collector<String> collector) throws Exception {// 从backend取得当前单词的myState状态KeyCount current = state.value();// 如果myState还从未没有赋值过,就在此初始化if (current == null) {current = new KeyCount();current.key = s;current.count = 0;}int count = 0;// iterable可以访问该key当前窗口内的所有数据,// 这里简单处理,只统计了元素数量for (Tuple2<String, Integer> tuple2 : iterable) {count++;}// 更新当前key的元素总数current.count += count;// 更新状态到backendstate.update(current);System.out.println("getRuntimeContext() == context :" + (getRuntimeContext() == context));ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));ValueState<KeyCount> contextGlobalValueState = context.globalState().getState(new ValueStateDescriptor<>("myGlobalState", KeyCount.class));KeyCount windowValue = contextWindowValueState.value();if (windowValue == null) {windowValue = new KeyCount();windowValue.key = s;windowValue.count = 0;}windowValue.count += count;contextWindowValueState.update(windowValue);KeyCount globalValue = contextGlobalValueState.value();if (globalValue == null) {globalValue = new KeyCount();globalValue.key = s;globalValue.count = 0;}globalValue.count += count;contextGlobalValueState.update(globalValue);ValueState<KeyCount> contextWindowSameNameState =context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));ValueState<KeyCount> contextGlobalSameNameState =context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (contextWindowSameNameState == contextGlobalSameNameState));System.out.println("state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));// 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串String value = String.format("window, %s, %s - %s, %d, total : %d, windowStateCount :%s, globalStateCount :%s\n",// 当前keys,// 当前窗口的起始时间time(context.window().getStart()),// 当前窗口的结束时间time(context.window().getEnd()),// 当前key在当前窗口内元素总数count,// 当前key出现的总数current.count,contextWindowValueState.value(),contextGlobalValueState.value());// 发射到下游算子collector.collect(value);}});// 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据mainDataStream.print();env.execute("processfunction demo : processwindowfunction");}public static String time(long timeStamp) {return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp));}}
输出结果:
window, XXX, 08:34:45 - 08:34:50, 3, total : 22, windowStateCount :KeyCount{key='XXX', count=3}, globalStateCount :KeyCount{key='XXX', count=22}
window, YYY, 08:34:45 - 08:34:50, 2, total : 22, windowStateCount :KeyCount{key='YYY', count=2}, globalStateCount :KeyCount{key='YYY', count=22}
从结果可以验证以上的结论,此外需要特别注意的一点是context.windowState()的状态需要在clear方法中清理掉,因为一旦时间窗口结束,就再也没有机会清理了
从这个例子中还发现一个比较有趣的现象:
ValueState<KeyCount> state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextWindowSameNameState =context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextGlobalSameNameState =context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
在open中通过getRuntimeContext().getState定义的状态竟然可以通过 context.windowState()/ context.globalState()访问到,并且他们指向的都是同一个变量,可以参见代码的输出:
System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (contextWindowSameNameState == contextGlobalSameNameState));
System.out.println("state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));
结果如下:
contextWindowSameNameState == contextGlobalSameNameState :true
state == contextGlobalSameNameState :true
参考文献:
https://cloud.tencent.com/developer/article/1815079
相关文章:
flink的ProcessWindowFunction函数的三种状态
背景 在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢? …...

day50-springboot+ajax分页
分页依赖: <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> 配置: …...

Win7 专业版Windows time w32time服务电脑重启后老是已停止
环境: Win7 专业版 问题描述: Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案: 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator,DCOM Server Process Launcher这三个服务是…...

全网最强,接口自动化测试-token登录关联实战总结(超详细)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 在PC端登录公司的…...

OLAP ModelKit Crack,ADO.NET和IList
OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件,用C#编写,只包含100%托管代码。它具有XP主题的外观,并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…...

4 三组例子,用OpenCV玩转图像-AI-python
读取,缩放,旋转,写入图像 首先导入包,为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…...

计算机网络-三种交换方式
计算机网络-三种交换方式 电路交换(Circuit Switching) 电话交换机接通电话线的方式称为电路交换从通信资源分配的角度来看,交换(Switching)就是按照某种方式动态的分配传输线路的资源 电话交换机 为了解决电话之间通信两两之间连线过多,所以产生了电话…...

03 制作Ubuntu启动盘
1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上,其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…...

【JavaSE】String类中常用的字符串方法(超全)
目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…...

Bootload U-Boot分析
Bootloader是在操作系统运行之前执行的一段小程序。通过这段小程序可以初始化硬件设备、建立内存空间的映射表,从而建立适当的系统软硬件环境,为最终调用操作系统内核做好准备。 对于嵌入式系统,Bootloader是基于特定硬件平台来实现的。因此…...

以公益之行,筑责任之心——2023年中创算力爱心公益助学活动
捐资助学是一项功在当代、利在千秋的义举。 高考录取工作已经开始,一张张高校录取通知书也陆续送达各位准大学生手中。当他们怀揣着对大学的好奇与憧憬,准备迈进理想的大学时,还有一群人,他们渴望知识,却因经济困难而…...

【机器学习】处理样本不平衡的问题
文章目录 样本不均衡的概念及影响样本不均衡的解决方法样本层面欠采样 (undersampling)过采样数据增强 损失函数层面模型层面采样集成学习 决策及评估指标 样本不均衡的概念及影响 机器学习中,样本不均衡问题经常遇到,比如在金融…...

Android前沿技术?Jetpack如何?
Jetpack Compose是Android开发领域的一项前沿技术,它提供了一种全新的方式来构建用户界面。近年来,Jetpack Compose在各大招聘等网站上的招聘岗位逐渐增多,薪资待遇也相应提高。本文将从招聘岗位的薪资与技术要求入手,分析Jetpack…...

为react项目添加开发/提交规范(前端工程化、eslint、prettier、husky、commitlint、stylelint)
因历史遗留原因,接手的项目没有代码提醒/格式化,包括 eslint、pretttier,也没有 commit 提交校验,如 husky、commitlint、stylelint,与其期待自己或者同事的代码写得完美无缺,不如通过一些工具来进行规范和…...
小研究 - MySQL 数据库安全加固技术的研究(一)
随着信息系统的日益普及,后台数据库的安全问题逐步被人们重视起来。以当下热门的MySQL 数据库为例,通过分析数据库的安全机制以及总结数据库面临的安全风险,针对性地提出了相应的加固策略,为数据库的安全加固工作提供了技术支撑。…...

linux安装redis带图详细
如何在Linux系统中卸载Redis 一、使用apt-get卸载Redis sudo apt-get purge redis-server如果使用apt-get安装Redis,可以使用apt-get purge命令完全卸载Redis。其中,purge命令会不仅仅删除Redis二进制文件,还会删除配置文件、数据文件和日志…...
MySql——数据库常用命令
一、关于数据库的操作 查看mysql中有哪些数据库 show databases;显示创建指定数据库MySQL语句 SHOW CREATE DATABASE 数据库名:使用指定数据库 use 数据库名;查看当前使用的是哪个数据库 select database();查看指定数据库下有哪些表 use 数据库名; -- 先选择…...

如何通过 WordPress 数据库启用插件?【进不去后台可用】
如果您无法访问 WordPress 后台并需要激活插件以恢复访问权限,则可以通过 WordPress 数据库来实现。本文将向您展示如何使用数据库轻松激活 WordPress 插件。 何时使用数据库激活 WordPress 插件? 许多常见的 WordPress 错误会阻止网站所有者访问 WordP…...

芯片热处理设备 HTR-4立式4寸快速退火炉
HTR-4立式4寸快速退火炉 HTR-4立式4寸快速退火炉(芯片热处理设备)广泛应用在IC晶圆、LED晶圆、MEMS、化合物半导体和功率器件等多种芯片产品的生产,和欧姆接触快速合金、离子注入退火、氧化物生长、消除应力和致密化等工艺当中,通…...

小研究 - 基于 MySQL 数据库的数据安全应用设计(一)
信息系统工程领域对数据安全的要求比较高,MySQL 数据库管理系统普遍应用于各种信息系统应用软件的开发之中,而角色与权限设计不仅关乎数据库中数据保密性的性能高低,也关系到用户使用数据库的最低要求。在对数据库的安全性进行设计时…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
深入浅出WebGL:在浏览器中解锁3D世界的魔法钥匙
WebGL:在浏览器中解锁3D世界的魔法钥匙 引言:网页的边界正在消失 在数字化浪潮的推动下,网页早已不再是静态信息的展示窗口。如今,我们可以在浏览器中体验逼真的3D游戏、交互式数据可视化、虚拟实验室,甚至沉浸式的V…...

DAY 45 超大力王爱学Python
来自超大力王的友情提示:在用tensordoard的时候一定一定要用绝对位置,例如:tensorboard --logdir"D:\代码\archive (1)\runs\cifar10_mlp_experiment_2" 不然读取不了数据 知识点回顾: tensorboard的发展历史和原理tens…...

信息收集:从图像元数据(隐藏信息收集)到用户身份的揭秘 --- 7000
目录 🌐 访问Web服务 💻 分析源代码 ⬇️ 下载图片并保留元数据 🔍 提取元数据(重点) 👤 生成用户名列表 🛠️ 技术原理 图片元数据(EXIF 数据) Username-Anarch…...
C++ 使用 ffmpeg 解码 rtsp 流并获取每帧的YUV数据
一、简介 FFmpeg 是一个开源的多媒体处理框架,非常适用于处理音视频的录制、转换、流化和播放。 二、代码 示例代码使用工作线程读取rtsp视频流,自动重连,支持手动退出,解码并将二进制文件保存下来。 注意: 代…...