flink的ProcessWindowFunction函数的三种状态
背景
在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState,
每个key+每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢?
ProcessWindowFunction处理函数三种状态之间的关系:
1.getRuntimeContext.getState这个定义的状态是每个key维度的,也就是可以跨时间窗口并维持状态的
2.context.windowState()这个定义的状态是和每个key以及窗口相关的,也就是虽然key相同,但是时间窗口不同,他们的值也不一样.
3.context.globalState这个定义的状态是和每个key相关的,也就是和getRuntimeContext.getState的定义一样,可以跨窗口维护状态
验证代码如下所示:
package wikiedits.func;import org.apache.flink.api.common.state.ValueState;import org.apache.flink.api.common.state.ValueStateDescriptor;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.configuration.Configuration;import org.apache.flink.streaming.api.TimeCharacteristic;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.source.SourceFunction;import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.streaming.api.windowing.windows.TimeWindow;import org.apache.flink.util.Collector;
import wikiedits.func.model.KeyCount;import java.text.SimpleDateFormat;import java.util.Date;public class ProcessWindowFunctionDemo {public static void main(String[] args) throws Exception {final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 使用处理时间env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);// 并行度为1env.setParallelism(1);// 设置数据源,一共三个元素DataStream<Tuple2<String, Integer>> dataStream = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {@Overridepublic void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {int xxxNum = 0;int yyyNum = 0;for (int i = 1; i < Integer.MAX_VALUE; i++) {// 只有XXX和YYY两种nameString name = (0 == i % 2) ? "XXX" : "YYY";//更新aaa和bbb元素的总数if (0 == i % 2) {xxxNum++;} else {yyyNum++;}// 使用当前时间作为时间戳long timeStamp = System.currentTimeMillis();// 将数据和时间戳打印出来,用来验证数据System.out.println(String.format("source,%s, %s, XXX total : %d, YYY total : %d\n",name,time(timeStamp),xxxNum,yyyNum));// 发射一个元素,并且戴上了时间戳ctx.collectWithTimestamp(new Tuple2<String, Integer>(name, 1), timeStamp);// 每发射一次就延时1秒Thread.sleep(1000);}}@Overridepublic void cancel() {}});// 将数据用5秒的滚动窗口做划分,再用ProcessWindowFunctionSingleOutputStreamOperator<String> mainDataStream = dataStream// 以Tuple2的f0字段作为key,本例中实际上key只有aaa和bbb两种.keyBy(value -> value.f0)// 5秒一次的滚动窗口.timeWindow(Time.seconds(5))// 统计每个key当前窗口内的元素数量,然后把key、数量、窗口起止时间整理成字符串发送给下游算子.process(new ProcessWindowFunction<Tuple2<String, Integer>, String, String, TimeWindow>() {// 自定义状态private ValueState<KeyCount> state;@Overridepublic void open(Configuration parameters) throws Exception {// 初始化状态,name是myStatestate = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));}public void clear(Context context){ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));contextWindowValueState.clear();}@Overridepublic void process(String s, Context context, Iterable<Tuple2<String, Integer>> iterable,Collector<String> collector) throws Exception {// 从backend取得当前单词的myState状态KeyCount current = state.value();// 如果myState还从未没有赋值过,就在此初始化if (current == null) {current = new KeyCount();current.key = s;current.count = 0;}int count = 0;// iterable可以访问该key当前窗口内的所有数据,// 这里简单处理,只统计了元素数量for (Tuple2<String, Integer> tuple2 : iterable) {count++;}// 更新当前key的元素总数current.count += count;// 更新状态到backendstate.update(current);System.out.println("getRuntimeContext() == context :" + (getRuntimeContext() == context));ValueState<KeyCount> contextWindowValueState = context.windowState().getState(new ValueStateDescriptor<>("myWindowState", KeyCount.class));ValueState<KeyCount> contextGlobalValueState = context.globalState().getState(new ValueStateDescriptor<>("myGlobalState", KeyCount.class));KeyCount windowValue = contextWindowValueState.value();if (windowValue == null) {windowValue = new KeyCount();windowValue.key = s;windowValue.count = 0;}windowValue.count += count;contextWindowValueState.update(windowValue);KeyCount globalValue = contextGlobalValueState.value();if (globalValue == null) {globalValue = new KeyCount();globalValue.key = s;globalValue.count = 0;}globalValue.count += count;contextGlobalValueState.update(globalValue);ValueState<KeyCount> contextWindowSameNameState =context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));ValueState<KeyCount> contextGlobalSameNameState =context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (contextWindowSameNameState == contextGlobalSameNameState));System.out.println("state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));// 将当前key及其窗口的元素数量,还有窗口的起止时间整理成字符串String value = String.format("window, %s, %s - %s, %d, total : %d, windowStateCount :%s, globalStateCount :%s\n",// 当前keys,// 当前窗口的起始时间time(context.window().getStart()),// 当前窗口的结束时间time(context.window().getEnd()),// 当前key在当前窗口内元素总数count,// 当前key出现的总数current.count,contextWindowValueState.value(),contextGlobalValueState.value());// 发射到下游算子collector.collect(value);}});// 打印结果,通过分析打印信息,检查ProcessWindowFunction中可以处理所有key的整个窗口的数据mainDataStream.print();env.execute("processfunction demo : processwindowfunction");}public static String time(long timeStamp) {return new SimpleDateFormat("hh:mm:ss").format(new Date(timeStamp));}}
输出结果:
window, XXX, 08:34:45 - 08:34:50, 3, total : 22, windowStateCount :KeyCount{key='XXX', count=3}, globalStateCount :KeyCount{key='XXX', count=22}
window, YYY, 08:34:45 - 08:34:50, 2, total : 22, windowStateCount :KeyCount{key='YYY', count=2}, globalStateCount :KeyCount{key='YYY', count=22}
从结果可以验证以上的结论,此外需要特别注意的一点是context.windowState()的状态需要在clear方法中清理掉,因为一旦时间窗口结束,就再也没有机会清理了
从这个例子中还发现一个比较有趣的现象:
ValueState<KeyCount> state = getRuntimeContext().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextWindowSameNameState =context.windowState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
ValueState<KeyCount> contextGlobalSameNameState =context.globalState().getState(new ValueStateDescriptor<>("myState", KeyCount.class));
在open中通过getRuntimeContext().getState定义的状态竟然可以通过 context.windowState()/ context.globalState()访问到,并且他们指向的都是同一个变量,可以参见代码的输出:
System.out.println("contextWindowSameNameState == contextGlobalSameNameState :" + (contextWindowSameNameState == contextGlobalSameNameState));
System.out.println("state == contextGlobalSameNameState :" + (state == contextGlobalSameNameState));
结果如下:
contextWindowSameNameState == contextGlobalSameNameState :true
state == contextGlobalSameNameState :true
参考文献:
https://cloud.tencent.com/developer/article/1815079
相关文章:
flink的ProcessWindowFunction函数的三种状态
背景 在处理窗口函数时,ProcessWindowFunction处理函数可以定义三个状态: 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState,那么这几个状态之间有什么关系呢? …...
day50-springboot+ajax分页
分页依赖: <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> 配置: …...
Win7 专业版Windows time w32time服务电脑重启后老是已停止
环境: Win7 专业版 问题描述: Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案: 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator,DCOM Server Process Launcher这三个服务是…...
全网最强,接口自动化测试-token登录关联实战总结(超详细)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 在PC端登录公司的…...
OLAP ModelKit Crack,ADO.NET和IList
OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件,用C#编写,只包含100%托管代码。它具有XP主题的外观,并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…...
4 三组例子,用OpenCV玩转图像-AI-python
读取,缩放,旋转,写入图像 首先导入包,为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…...
计算机网络-三种交换方式
计算机网络-三种交换方式 电路交换(Circuit Switching) 电话交换机接通电话线的方式称为电路交换从通信资源分配的角度来看,交换(Switching)就是按照某种方式动态的分配传输线路的资源 电话交换机 为了解决电话之间通信两两之间连线过多,所以产生了电话…...
03 制作Ubuntu启动盘
1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上,其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…...
【JavaSE】String类中常用的字符串方法(超全)
目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…...
Bootload U-Boot分析
Bootloader是在操作系统运行之前执行的一段小程序。通过这段小程序可以初始化硬件设备、建立内存空间的映射表,从而建立适当的系统软硬件环境,为最终调用操作系统内核做好准备。 对于嵌入式系统,Bootloader是基于特定硬件平台来实现的。因此…...
以公益之行,筑责任之心——2023年中创算力爱心公益助学活动
捐资助学是一项功在当代、利在千秋的义举。 高考录取工作已经开始,一张张高校录取通知书也陆续送达各位准大学生手中。当他们怀揣着对大学的好奇与憧憬,准备迈进理想的大学时,还有一群人,他们渴望知识,却因经济困难而…...
【机器学习】处理样本不平衡的问题
文章目录 样本不均衡的概念及影响样本不均衡的解决方法样本层面欠采样 (undersampling)过采样数据增强 损失函数层面模型层面采样集成学习 决策及评估指标 样本不均衡的概念及影响 机器学习中,样本不均衡问题经常遇到,比如在金融…...
Android前沿技术?Jetpack如何?
Jetpack Compose是Android开发领域的一项前沿技术,它提供了一种全新的方式来构建用户界面。近年来,Jetpack Compose在各大招聘等网站上的招聘岗位逐渐增多,薪资待遇也相应提高。本文将从招聘岗位的薪资与技术要求入手,分析Jetpack…...
为react项目添加开发/提交规范(前端工程化、eslint、prettier、husky、commitlint、stylelint)
因历史遗留原因,接手的项目没有代码提醒/格式化,包括 eslint、pretttier,也没有 commit 提交校验,如 husky、commitlint、stylelint,与其期待自己或者同事的代码写得完美无缺,不如通过一些工具来进行规范和…...
小研究 - MySQL 数据库安全加固技术的研究(一)
随着信息系统的日益普及,后台数据库的安全问题逐步被人们重视起来。以当下热门的MySQL 数据库为例,通过分析数据库的安全机制以及总结数据库面临的安全风险,针对性地提出了相应的加固策略,为数据库的安全加固工作提供了技术支撑。…...
linux安装redis带图详细
如何在Linux系统中卸载Redis 一、使用apt-get卸载Redis sudo apt-get purge redis-server如果使用apt-get安装Redis,可以使用apt-get purge命令完全卸载Redis。其中,purge命令会不仅仅删除Redis二进制文件,还会删除配置文件、数据文件和日志…...
MySql——数据库常用命令
一、关于数据库的操作 查看mysql中有哪些数据库 show databases;显示创建指定数据库MySQL语句 SHOW CREATE DATABASE 数据库名:使用指定数据库 use 数据库名;查看当前使用的是哪个数据库 select database();查看指定数据库下有哪些表 use 数据库名; -- 先选择…...
如何通过 WordPress 数据库启用插件?【进不去后台可用】
如果您无法访问 WordPress 后台并需要激活插件以恢复访问权限,则可以通过 WordPress 数据库来实现。本文将向您展示如何使用数据库轻松激活 WordPress 插件。 何时使用数据库激活 WordPress 插件? 许多常见的 WordPress 错误会阻止网站所有者访问 WordP…...
芯片热处理设备 HTR-4立式4寸快速退火炉
HTR-4立式4寸快速退火炉 HTR-4立式4寸快速退火炉(芯片热处理设备)广泛应用在IC晶圆、LED晶圆、MEMS、化合物半导体和功率器件等多种芯片产品的生产,和欧姆接触快速合金、离子注入退火、氧化物生长、消除应力和致密化等工艺当中,通…...
小研究 - 基于 MySQL 数据库的数据安全应用设计(一)
信息系统工程领域对数据安全的要求比较高,MySQL 数据库管理系统普遍应用于各种信息系统应用软件的开发之中,而角色与权限设计不仅关乎数据库中数据保密性的性能高低,也关系到用户使用数据库的最低要求。在对数据库的安全性进行设计时…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
