当前位置: 首页 > news >正文

【深度学习笔记】TensorFlow 基础

在 TensorFlow 2.0 及之后的版本中,默认采用 Eager Execution 的方式,不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码,无需构建计算图,可以立即进行数学计算,简化了代码调试的过程。本文主要介绍 TensorFlow 的基本用法,通过构建一个简单损失函数,介绍 TensorFlow 优化损失函数的过程。

目录

1 tf.Tensor

2 tf.Variable

3 tf.GradientTape


TensorFlow 是一个用于机器学习的端到端平台。它支持以下内容:

  • 基于多维数组的数值计算(类似于 NumPy)
  • GPU 和分布式处理
  • 自动微分
  • 模型构建、训练和导出

1 tf.Tensor


        TensorFlow 用 tf.Tensor 对象处理多维数组(或张量),以下是一个 2 维张量例子:

import tensorflow as tf
x = tf.constant([[1., 2., 3.],[4., 5., 6.]])
print(x)

tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

tf.Tensor 对象最重要的属性是 shape 与 dtype:

  • Tensor.shape  返回张量每个维度的大小
  • Tensor.dtype   返回张量中元素的数据类型

print(x.shape)

(2, 3)

print(x.dtype)

<dtype: 'float32'>

        TensorFlow 实现了张量的标准数学运算,同时也包括为机器学习定制的运算。以下是一些示例:

x + x
5 * x
tf.transpose(x)
tf.nn.softmax(x, axis=-1)
tf.reduce_sum(x)

2 tf.Variable

        在 TensorFlow 中,模型的权重用 tf.Variable 对象存储,称为变量。

import tensorflow as tfx = tf.Variable([0., 0., 0.])
x.assign([1, 2, 3])

<tf.Variable 'UnreadVariable' shape=(3,) dtype=float32, 
numpy=array([1., 2., 3.], dtype=float32)>

        tf.Variable 对象的数值可以改变,在 TensorFlow 2.0 中,不再使用 Session 启动计算,变量可以直接算出结果。

x.assign_add([1, 1, 1,])

<tf.Variable 'UnreadVariable' shape=(3,) dtype=float32, 
numpy=array([2., 3., 4.], dtype=float32)>

x.assign_sub([1, 1, 1])

<tf.Variable 'UnreadVariable' shape=(3,) dtype=float32, 
numpy=array([1., 2., 3.], dtype=float32)>

3 tf.GradientTape

        梯度下降法与相关算法是现在机器学习的基础。TensorFLow 实现了自动微分来计算梯度,通常用于计算机器学习模型的损失函数的梯度。

        TensorFlow 2.0 提供了 tf.GradientTape 对象,可以理解为“梯度流”,顾名思义,tf.GradientTape 是用来计算梯度用的。

        以下是一个简单的示例:

import tensorflow as tfdef f(x):return x**2 + 2*x - 5x = tf.Variable(1.0)with tf.GradientTape() as tape:y = f(x)
g_x = tape.gradient(y, x) # 计算 y 在 x = 1.0 处的梯度
print(g_x)

4.0

最后,构建一个简单损失函数,并使用 TensorFlow 计算最小值。

import tensorflow as tfdef loss(x):return x**2 - 10*x + 25x = tf.Variable(1.0) # 随机初始值losses = [] # 记录损失函数值
for i in range(100):with tf.GradientTape() as tape:one_loss = loss(x)lossed.append(one_loss)grad = tape.gradient(one_loss, x)x.assign_sub(0.1 * grad) # 执行一次梯度下降法print("The mininum of loss function is: ")
tf.print(x)

The mininum of loss function is: 

4.99999905

# 可视化优化过程
import matplotlib
from matplotlib import pyplot as pltmatplotlib.rcParams['figure.figsize'] = [8, 5]plt.figure()
plt.plot(losses)
plt.title('Loss vs training iterations')
plt.xlabel('iterations')
plt.ylabel('loss')

相关文章:

【深度学习笔记】TensorFlow 基础

在 TensorFlow 2.0 及之后的版本中&#xff0c;默认采用 Eager Execution 的方式&#xff0c;不再使用 1.0 版本的 Session 创建会话。Eager Execution 使用更自然地方式组织代码&#xff0c;无需构建计算图&#xff0c;可以立即进行数学计算&#xff0c;简化了代码调试的过程。…...

面试题-springcloud中的负载均衡是如何实现的?

一句话导读 Springcloud中的负载均衡是通过Ribbon实现的&#xff0c;自带有很多负载均衡策略&#xff0c;如&#xff1a;包括轮询&#xff08;Round Robin&#xff09;、随机&#xff08;Random&#xff09;、加权轮询&#xff08;Weighted Round Robin&#xff09;、加权随机&…...

flink的ProcessWindowFunction函数的三种状态

背景 在处理窗口函数时&#xff0c;ProcessWindowFunction处理函数可以定义三个状态&#xff1a; 富函数getRuntimeContext.getState, 每个key每个窗口的状态context.windowState(),每个key的状态context.globalState&#xff0c;那么这几个状态之间有什么关系呢&#xff1f; …...

day50-springboot+ajax分页

分页依赖&#xff1a; <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.0.0</version> </dependency> 配置&#xff1a; …...

Win7 专业版Windows time w32time服务电脑重启后老是已停止

环境&#xff1a; Win7 专业版 问题描述&#xff1a; Win7 专业版Windows time w32time服务电脑重启后老是已停止 解决方案&#xff1a; 1.检查启动Remote Procedure Call (RPC)、Remote Procedure Call (RPC) Locator&#xff0c;DCOM Server Process Launcher这三个服务是…...

全网最强,接口自动化测试-token登录关联实战总结(超详细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 在PC端登录公司的…...

OLAP ModelKit Crack,ADO.NET和IList

OLAP ModelKit Crack,ADO.NET和IList OLAP ModelKit是一个多功能的.NET OLAP组件&#xff0c;用C#编写&#xff0c;只包含100%托管代码。它具有XP主题的外观&#xff0c;并能够使用任何.NET数据源(ADO.NET和IList)。借助任何第三方组件(尤其是图表组件)呈现数据的能力扩展了产品…...

4 三组例子,用OpenCV玩转图像-AI-python

读取&#xff0c;缩放&#xff0c;旋转&#xff0c;写入图像 首先导入包&#xff0c;为了显示导入matplotlib/为了在matplotlib显示 导入CV2/查看版本 导入图片/查看图片类型 图片数组 数组大小 对于opencv通道顺序蓝色B、绿色G、红色R matplotlib通道顺序为 红色R、绿色G、蓝…...

计算机网络-三种交换方式

计算机网络-三种交换方式 电路交换(Circuit Switching) 电话交换机接通电话线的方式称为电路交换从通信资源分配的角度来看&#xff0c;交换(Switching)就是按照某种方式动态的分配传输线路的资源 电话交换机 为了解决电话之间通信两两之间连线过多&#xff0c;所以产生了电话…...

03 制作Ubuntu启动盘

1 软碟通 我是用软碟通制作启动盘。安装软碟通时一定要把虚拟光驱给勾选上&#xff0c;其余两个可以看你心情。 2 镜像文件 我使用清华镜像网站找到的Ubuntu镜像文件。 Index of /ubuntu-releases/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 请自己选择镜像…...

【JavaSE】String类中常用的字符串方法(超全)

目录 1.求字符串的长度 2.判断字符串是否为空 3.String对象的比较 3.1 判断字符串是否相同 3.2 比较字符串大小 3.3 忽略大小写比较 4.字符串查找 5.转化 5.1 数值和字符串转化 5.1.1 数字转字符串 valueof 5.1.2 valueOf的其他用法 5.1.3 字符串转数字 5.2 大小写转…...

Bootload U-Boot分析

Bootloader是在操作系统运行之前执行的一段小程序。通过这段小程序可以初始化硬件设备、建立内存空间的映射表&#xff0c;从而建立适当的系统软硬件环境&#xff0c;为最终调用操作系统内核做好准备。 对于嵌入式系统&#xff0c;Bootloader是基于特定硬件平台来实现的。因此…...

以公益之行,筑责任之心——2023年中创算力爱心公益助学活动

捐资助学是一项功在当代、利在千秋的义举。 高考录取工作已经开始&#xff0c;一张张高校录取通知书也陆续送达各位准大学生手中。当他们怀揣着对大学的好奇与憧憬&#xff0c;准备迈进理想的大学时&#xff0c;还有一群人&#xff0c;他们渴望知识&#xff0c;却因经济困难而…...

【机器学习】处理样本不平衡的问题

文章目录 样本不均衡的概念及影响样本不均衡的解决方法样本层面欠采样 &#xff08;undersampling&#xff09;过采样数据增强 损失函数层面模型层面采样集成学习 决策及评估指标 样本不均衡的概念及影响 机器学习中&#xff0c;样本不均衡问题经常遇到&#xff0c;比如在金融…...

Android前沿技术?Jetpack如何?

Jetpack Compose是Android开发领域的一项前沿技术&#xff0c;它提供了一种全新的方式来构建用户界面。近年来&#xff0c;Jetpack Compose在各大招聘等网站上的招聘岗位逐渐增多&#xff0c;薪资待遇也相应提高。本文将从招聘岗位的薪资与技术要求入手&#xff0c;分析Jetpack…...

为react项目添加开发/提交规范(前端工程化、eslint、prettier、husky、commitlint、stylelint)

因历史遗留原因&#xff0c;接手的项目没有代码提醒/格式化&#xff0c;包括 eslint、pretttier&#xff0c;也没有 commit 提交校验&#xff0c;如 husky、commitlint、stylelint&#xff0c;与其期待自己或者同事的代码写得完美无缺&#xff0c;不如通过一些工具来进行规范和…...

小研究 - MySQL 数据库安全加固技术的研究(一)

随着信息系统的日益普及&#xff0c;后台数据库的安全问题逐步被人们重视起来。以当下热门的MySQL 数据库为例&#xff0c;通过分析数据库的安全机制以及总结数据库面临的安全风险&#xff0c;针对性地提出了相应的加固策略&#xff0c;为数据库的安全加固工作提供了技术支撑。…...

linux安装redis带图详细

如何在Linux系统中卸载Redis 一、使用apt-get卸载Redis sudo apt-get purge redis-server如果使用apt-get安装Redis&#xff0c;可以使用apt-get purge命令完全卸载Redis。其中&#xff0c;purge命令会不仅仅删除Redis二进制文件&#xff0c;还会删除配置文件、数据文件和日志…...

MySql——数据库常用命令

一、关于数据库的操作 查看mysql中有哪些数据库 show databases;显示创建指定数据库MySQL语句 SHOW CREATE DATABASE 数据库名&#xff1a;使用指定数据库 use 数据库名;查看当前使用的是哪个数据库 select database();查看指定数据库下有哪些表 use 数据库名; -- 先选择…...

如何通过 WordPress 数据库启用插件?【进不去后台可用】

如果您无法访问 WordPress 后台并需要激活插件以恢复访问权限&#xff0c;则可以通过 WordPress 数据库来实现。本文将向您展示如何使用数据库轻松激活 WordPress 插件。 何时使用数据库激活 WordPress 插件&#xff1f; 许多常见的 WordPress 错误会阻止网站所有者访问 WordP…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...