当前位置: 首页 > news >正文

[机器学习]线性回归模型

线性回归

线性回归:根据数据,确定两种或两种以上变量间相互依赖的定量关系

函数表达式:
y = f ( x 1 , x 2 . . . x n ) y = f(x_1,x_2...x_n) y=f(x1,x2...xn)
​ 回归根据变量数分为一元回归[ y = f ( x ) y=f(x) y=f(x)]和多元回归[ y = f ( x 1 , x 2 . . . x n ) y = f(x_1,x_2...x_n) y=f(x1,x2...xn)],根据函数关系分为线性回归[ y = a x + b y=ax+b y=ax+b]与非线性回归[ y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c]

平方误差成本函数

m i n i m i z e ( J ) minimize(J) minimize(J)
J = 1 2 m ∑ i = 1 m ( y i ‘ − y i ) 2 = 1 2 m ∑ i = 1 m ( a x i + b − y i ) 2 = g ( a , b ) J=\frac{1}{2m} \sum_{i=1}^{m}(y^{`}_i-y_i)^2=\frac{1}{2m} \sum_{i=1}^{m}(ax_i+b-y_i)^2=g(a,b) J=2m1i=1m(yiyi)2=2m1i=1m(axi+byi)2=g(a,b)

梯度下降算法

J = f ( p ) J=f(p) J=f(p)
p = p − α ∂ ∂ p i f ( p i ) p = p - \alpha \frac{\partial}{\partial p_i}f(p_i) p=pαpif(pi)

​ 寻找极小值的一种方法。通过向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索,直到在极小点收敛。

实验:

基于generated_data.csv数据,建立线性回归模型,预测x=3.5对应的y值,评估模型表现

#load the data
import pandas as pd
data = pd.read_csv('D:\workspace\data\ML\generated_data.csv')data.head()
print(type(data), data.shape)x = data.loc[:,'x']
y = data.loc[:,'y']
print(x,y)#visualize the data 
from matplotlib import pyplot as plt
plt.figure(figsize=(5,5))
plt.scatter(x,y)
plt.show()# set up a linear regression model
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()import numpy as np
x = np.array(x)
x = x.reshape(-1,1)
y = np.array(y)
y = y.reshape(-1,1)lr_model.fit(x,y)y_predict = lr_model.predict(x)
print(y_predict)print(y)y_predict_single = lr_model.predict([[3.5]])print(y_predict_single)# a/b print
a = lr_model.coef_
b = lr_model.intercept_
print(a,b)from sklearn.metrics import mean_squared_error, r2_score
MSE = mean_squared_error(y, y_predict)
R2 = r2_score(y, y_predict)
print(MSE, R2)plt.figure()
plt.plot(y,y_predict)
plt.show()

运行结果:

在这里插入图片描述

其中MSE为 3.1554436208840474 e − 31 3.1554436208840474e^{-31} 3.1554436208840474e31,R2为1.0

实验结论:在这个实验中,我们建立了一个单因子线性回归模型,得到x=3.5对应的y值为12,其均方误差(MSE)非常接近于零,而确定系数(R^2)接近于1。这表明我们的模型可以非常好地拟合数据,预测能力非常强。

附:generated_data,csv数据
在这里插入图片描述

相关文章:

[机器学习]线性回归模型

线性回归 线性回归:根据数据,确定两种或两种以上变量间相互依赖的定量关系 函数表达式: y f ( x 1 , x 2 . . . x n ) y f(x_1,x_2...x_n) yf(x1​,x2​...xn​) ​ 回归根据变量数分为一元回归[ y f ( x ) yf(x) yf(x)]和多元回归[ y …...

Vue基于php医院预约挂号系统_6nrhh

随着信息时代的来临,过去的管理方式缺点逐渐暴露,对过去的医院预约挂号管理方式的缺点进行分析,采取计算机方式构建医院预约挂号系统。本文通过阅读相关文献,研究国内外相关技术,开发并设计一款医院预约挂号系统的构建…...

2023-08-07力扣今日六题-不错题

链接: 剑指 Offer 04. 二维数组中的查找 题意: 一个二维矩阵数组,在行上非递减,列上也非递减 解: 虽然在行列上非递减,但是整体并不有序,第一行存在大于第二行的数字,第一列存在…...

Elasticsearch搜索出现NAN异常

原因分析 Elasticsearch默认的打分,一般是不会出现异常的之所以会出现NAN异常,往往是因为我们重新计算了打分,使用了function_score核心原因是在function_score中,出现了计算异常,比如 0/0,比如log1p(x),x为负数等 真…...

(杭电多校)2023“钉耙编程”中国大学生算法设计超级联赛(6)

1001 Count 当k在区间(1n)/2的左边时,如图,[1,k]和[n-k1,n]完全相同,所以就m^(n-k) 当k在区间(1n)/2的右边时,如图,[1,n-k1]和[k,n]完全相同,所以也是m^(n-k) 别忘了特判,当k等于n时,n-k为0,然后a1a1,a2a2,..anan,所以没什么限制,那么就是m^n AC代码: #includ…...

【JavaScript 】浏览器事件处理

1. 什么是浏览器事件? 浏览器事件是指在网页中发生的各种交互和动作,例如用户点击按钮、页面加载完成、输入框文本变化等。通过处理这些事件,可以编写相应的JavaScript代码来实现特定的功能和行为。 2. 常见的浏览器事件 以下是一些常见的浏览器事件及其用途的详细介绍: c…...

(力扣)用两个队列实现栈---C语言

分享一首歌曲吧,希望在枯燥的刷题生活中带给你希望和勇气,加油! 题目: 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty&#…...

使用 RediSearch 在 Redis 中进行全文检索

原文链接: 使用 RediSearch 在 Redis 中进行全文检索 Redis 大家肯定都不陌生了,作为一种快速、高性能的键值存储数据库,广泛应用于缓存、队列、会话存储等方面。 然而,Redis 在原生状态下并不支持全文检索功能,这使…...

[Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序

1.今天开发了一套服务程序,使用的是Odbc连接MySql数据库, 在我本机用VS打开程序时,访问一切正常,当发布出来装在电脑上,连接数据库时提示: [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定…...

springboot生成表结构和表数据sql

需求 业务背景是需要某单机程序需要把正在进行的任务导出,然后另一台电脑上单机继续运行,我这里选择的方案是同步SQL形式,并保证ID随机,多个数据库不会重复。 实现 package com.nari.web.controller.demo.controller;import cn…...

代码随想录—力扣算法题:209长度最小的子数组.Java版(示例代码与导图详解)

版本说明 当前版本号[20230808]。 版本修改说明20230808初版 目录 文章目录 版本说明目录209.长度最小的子数组思路暴力解法滑动窗口 两种方法的区别总结 209.长度最小的子数组 力扣题目链接 更多内容可点击此处跳转到代码随想录,看原版文件 给定一个含有 n 个…...

81 | Python可视化篇 —— Seaborn数据可视化

Seaborn是Python中一个基于Matplotlib的高级数据可视化库,它提供了更简单的API和更美观的图形样式,适用于数据探索和展示。在本教程中,我们将介绍Seaborn的基本概念和用法,并通过一些示例演示如何使用Seaborn来创建各种图表和图形。 文章目录 1. 导入Seaborn库和数据2. 数据…...

解决Error running XXXApplicationCommand line is too long.报错

测试IDEA版本:2019.2.4 ,2020.1.3 文章目录 一. 问题场景二. 报错原因2.1 为什么命令行过长会导致这种问题? 三. 解决方案3.1 方案一3.2 方案二 一. 问题场景 当我们从GitHub或公司自己搭建的git仓库上拉取项目代码时,会出现以下错误 报错代…...

【Linux】—— 进程等待 waitwaitpid

序言: 之前讲过,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内存泄漏。因此,为了解决这个问题,就需要用到有关 “进程等待” 的基本知识!!&am…...

el-tree 懒加载数据,增删改时局部刷新实现

1.数据过多时进行懒加载孩子节点,根据层级传参获取后端孩子数据 懒加载主要部分: 1参数: :load"loadNode" lazy :props"defaultProps" 2.defaultProps 需要设置isLeaf: isLeaf,去除最后一层孩子节点的展开图表 defaultProps: { ch…...

opencv基础44- Canny边缘检测详解-cv.Canny()

什么是Canny边缘检测? Canny边缘检测是一种经典的边缘检测算法,由John F. Canny在1986年提出。它被广泛应用于计算机视觉和图像处理领域,是一种多阶段的边缘检测算法,能够有效地检测图像中的边缘并抑制噪声。 Canny边缘检测的主要…...

neo4j查询语言Cypher详解(三)--函数

函数 Cypher中的函数如果输入参数为null,则返回null。 以字符串作为输入的函数都对Unicode字符进行操作,而不是对标准字符进行操作。例如,size()函数应用于任何Unicode字符将返回1,即使该字符不适合一个字符的16位。 可以通过 …...

kafka权威指南(阅读摘录)

零复制 Kafka 使用零复制技术向客户端发送消息——也就是说,Kafka 直接把消息从文件(或者更确切地说是 Linux 文件系统缓存)里发送到网络通道,而不需要经过任何中间缓冲区。这是 Kafka 与其他大部分数据库系统不一样的地方&#…...

【爬虫实践】使用Python从网站抓取数据

一、说明 本周我不得不为客户抓取一个网站。我意识到我做得如此自然和迅速,分享它会很有用,这样你也可以掌握这门艺术。【免责声明:本文展示了我的抓取做法,如果您有更多相关做法请在评论中分享】 二、计划策略 2.1 策划 确定您…...

win10 2022unity设置中文

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言解决方法 前言 在Edit->preferences里找不到language选项。 解决方法 【1】打开下面地址 注意 :把{version}换成你当前安装的版本,比如说如果…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...