当前位置: 首页 > news >正文

[机器学习]线性回归模型

线性回归

线性回归:根据数据,确定两种或两种以上变量间相互依赖的定量关系

函数表达式:
y = f ( x 1 , x 2 . . . x n ) y = f(x_1,x_2...x_n) y=f(x1,x2...xn)
​ 回归根据变量数分为一元回归[ y = f ( x ) y=f(x) y=f(x)]和多元回归[ y = f ( x 1 , x 2 . . . x n ) y = f(x_1,x_2...x_n) y=f(x1,x2...xn)],根据函数关系分为线性回归[ y = a x + b y=ax+b y=ax+b]与非线性回归[ y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c]

平方误差成本函数

m i n i m i z e ( J ) minimize(J) minimize(J)
J = 1 2 m ∑ i = 1 m ( y i ‘ − y i ) 2 = 1 2 m ∑ i = 1 m ( a x i + b − y i ) 2 = g ( a , b ) J=\frac{1}{2m} \sum_{i=1}^{m}(y^{`}_i-y_i)^2=\frac{1}{2m} \sum_{i=1}^{m}(ax_i+b-y_i)^2=g(a,b) J=2m1i=1m(yiyi)2=2m1i=1m(axi+byi)2=g(a,b)

梯度下降算法

J = f ( p ) J=f(p) J=f(p)
p = p − α ∂ ∂ p i f ( p i ) p = p - \alpha \frac{\partial}{\partial p_i}f(p_i) p=pαpif(pi)

​ 寻找极小值的一种方法。通过向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索,直到在极小点收敛。

实验:

基于generated_data.csv数据,建立线性回归模型,预测x=3.5对应的y值,评估模型表现

#load the data
import pandas as pd
data = pd.read_csv('D:\workspace\data\ML\generated_data.csv')data.head()
print(type(data), data.shape)x = data.loc[:,'x']
y = data.loc[:,'y']
print(x,y)#visualize the data 
from matplotlib import pyplot as plt
plt.figure(figsize=(5,5))
plt.scatter(x,y)
plt.show()# set up a linear regression model
from sklearn.linear_model import LinearRegression
lr_model = LinearRegression()import numpy as np
x = np.array(x)
x = x.reshape(-1,1)
y = np.array(y)
y = y.reshape(-1,1)lr_model.fit(x,y)y_predict = lr_model.predict(x)
print(y_predict)print(y)y_predict_single = lr_model.predict([[3.5]])print(y_predict_single)# a/b print
a = lr_model.coef_
b = lr_model.intercept_
print(a,b)from sklearn.metrics import mean_squared_error, r2_score
MSE = mean_squared_error(y, y_predict)
R2 = r2_score(y, y_predict)
print(MSE, R2)plt.figure()
plt.plot(y,y_predict)
plt.show()

运行结果:

在这里插入图片描述

其中MSE为 3.1554436208840474 e − 31 3.1554436208840474e^{-31} 3.1554436208840474e31,R2为1.0

实验结论:在这个实验中,我们建立了一个单因子线性回归模型,得到x=3.5对应的y值为12,其均方误差(MSE)非常接近于零,而确定系数(R^2)接近于1。这表明我们的模型可以非常好地拟合数据,预测能力非常强。

附:generated_data,csv数据
在这里插入图片描述

相关文章:

[机器学习]线性回归模型

线性回归 线性回归:根据数据,确定两种或两种以上变量间相互依赖的定量关系 函数表达式: y f ( x 1 , x 2 . . . x n ) y f(x_1,x_2...x_n) yf(x1​,x2​...xn​) ​ 回归根据变量数分为一元回归[ y f ( x ) yf(x) yf(x)]和多元回归[ y …...

Vue基于php医院预约挂号系统_6nrhh

随着信息时代的来临,过去的管理方式缺点逐渐暴露,对过去的医院预约挂号管理方式的缺点进行分析,采取计算机方式构建医院预约挂号系统。本文通过阅读相关文献,研究国内外相关技术,开发并设计一款医院预约挂号系统的构建…...

2023-08-07力扣今日六题-不错题

链接: 剑指 Offer 04. 二维数组中的查找 题意: 一个二维矩阵数组,在行上非递减,列上也非递减 解: 虽然在行列上非递减,但是整体并不有序,第一行存在大于第二行的数字,第一列存在…...

Elasticsearch搜索出现NAN异常

原因分析 Elasticsearch默认的打分,一般是不会出现异常的之所以会出现NAN异常,往往是因为我们重新计算了打分,使用了function_score核心原因是在function_score中,出现了计算异常,比如 0/0,比如log1p(x),x为负数等 真…...

(杭电多校)2023“钉耙编程”中国大学生算法设计超级联赛(6)

1001 Count 当k在区间(1n)/2的左边时,如图,[1,k]和[n-k1,n]完全相同,所以就m^(n-k) 当k在区间(1n)/2的右边时,如图,[1,n-k1]和[k,n]完全相同,所以也是m^(n-k) 别忘了特判,当k等于n时,n-k为0,然后a1a1,a2a2,..anan,所以没什么限制,那么就是m^n AC代码: #includ…...

【JavaScript 】浏览器事件处理

1. 什么是浏览器事件? 浏览器事件是指在网页中发生的各种交互和动作,例如用户点击按钮、页面加载完成、输入框文本变化等。通过处理这些事件,可以编写相应的JavaScript代码来实现特定的功能和行为。 2. 常见的浏览器事件 以下是一些常见的浏览器事件及其用途的详细介绍: c…...

(力扣)用两个队列实现栈---C语言

分享一首歌曲吧,希望在枯燥的刷题生活中带给你希望和勇气,加油! 题目: 请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty&#…...

使用 RediSearch 在 Redis 中进行全文检索

原文链接: 使用 RediSearch 在 Redis 中进行全文检索 Redis 大家肯定都不陌生了,作为一种快速、高性能的键值存储数据库,广泛应用于缓存、队列、会话存储等方面。 然而,Redis 在原生状态下并不支持全文检索功能,这使…...

[Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定默认驱动程序

1.今天开发了一套服务程序,使用的是Odbc连接MySql数据库, 在我本机用VS打开程序时,访问一切正常,当发布出来装在电脑上,连接数据库时提示: [Microsoft][ODBC 驱动程序管理器] 未发现数据源名称并且未指定…...

springboot生成表结构和表数据sql

需求 业务背景是需要某单机程序需要把正在进行的任务导出,然后另一台电脑上单机继续运行,我这里选择的方案是同步SQL形式,并保证ID随机,多个数据库不会重复。 实现 package com.nari.web.controller.demo.controller;import cn…...

代码随想录—力扣算法题:209长度最小的子数组.Java版(示例代码与导图详解)

版本说明 当前版本号[20230808]。 版本修改说明20230808初版 目录 文章目录 版本说明目录209.长度最小的子数组思路暴力解法滑动窗口 两种方法的区别总结 209.长度最小的子数组 力扣题目链接 更多内容可点击此处跳转到代码随想录,看原版文件 给定一个含有 n 个…...

81 | Python可视化篇 —— Seaborn数据可视化

Seaborn是Python中一个基于Matplotlib的高级数据可视化库,它提供了更简单的API和更美观的图形样式,适用于数据探索和展示。在本教程中,我们将介绍Seaborn的基本概念和用法,并通过一些示例演示如何使用Seaborn来创建各种图表和图形。 文章目录 1. 导入Seaborn库和数据2. 数据…...

解决Error running XXXApplicationCommand line is too long.报错

测试IDEA版本:2019.2.4 ,2020.1.3 文章目录 一. 问题场景二. 报错原因2.1 为什么命令行过长会导致这种问题? 三. 解决方案3.1 方案一3.2 方案二 一. 问题场景 当我们从GitHub或公司自己搭建的git仓库上拉取项目代码时,会出现以下错误 报错代…...

【Linux】—— 进程等待 waitwaitpid

序言: 之前讲过,子进程退出,父进程如果不管不顾,就可能造成‘僵尸进程’的问题,进而造成内存泄漏。因此,为了解决这个问题,就需要用到有关 “进程等待” 的基本知识!!&am…...

el-tree 懒加载数据,增删改时局部刷新实现

1.数据过多时进行懒加载孩子节点,根据层级传参获取后端孩子数据 懒加载主要部分: 1参数: :load"loadNode" lazy :props"defaultProps" 2.defaultProps 需要设置isLeaf: isLeaf,去除最后一层孩子节点的展开图表 defaultProps: { ch…...

opencv基础44- Canny边缘检测详解-cv.Canny()

什么是Canny边缘检测? Canny边缘检测是一种经典的边缘检测算法,由John F. Canny在1986年提出。它被广泛应用于计算机视觉和图像处理领域,是一种多阶段的边缘检测算法,能够有效地检测图像中的边缘并抑制噪声。 Canny边缘检测的主要…...

neo4j查询语言Cypher详解(三)--函数

函数 Cypher中的函数如果输入参数为null,则返回null。 以字符串作为输入的函数都对Unicode字符进行操作,而不是对标准字符进行操作。例如,size()函数应用于任何Unicode字符将返回1,即使该字符不适合一个字符的16位。 可以通过 …...

kafka权威指南(阅读摘录)

零复制 Kafka 使用零复制技术向客户端发送消息——也就是说,Kafka 直接把消息从文件(或者更确切地说是 Linux 文件系统缓存)里发送到网络通道,而不需要经过任何中间缓冲区。这是 Kafka 与其他大部分数据库系统不一样的地方&#…...

【爬虫实践】使用Python从网站抓取数据

一、说明 本周我不得不为客户抓取一个网站。我意识到我做得如此自然和迅速,分享它会很有用,这样你也可以掌握这门艺术。【免责声明:本文展示了我的抓取做法,如果您有更多相关做法请在评论中分享】 二、计划策略 2.1 策划 确定您…...

win10 2022unity设置中文

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言解决方法 前言 在Edit->preferences里找不到language选项。 解决方法 【1】打开下面地址 注意 :把{version}换成你当前安装的版本,比如说如果…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能

指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

规则与人性的天平——由高考迟到事件引发的思考

当那位身着校服的考生在考场关闭1分钟后狂奔而至,他涨红的脸上写满绝望。铁门内秒针划过的弧度,成为改变人生的残酷抛物线。家长声嘶力竭的哀求与考务人员机械的"这是规定",构成当代中国教育最尖锐的隐喻。 一、刚性规则的必要性 …...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本,核心功能完全一致,主要区别在于模块化格式和优化方式,适合不同的开发环境。以下是详细对比: 1. 模块化格式 lodash 使用 CommonJS 模块格式(require/module.exports&a…...

GB/T 43887-2024 核级柔性石墨板材检测

核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标: 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...