当前位置: 首页 > news >正文

LeetCode 1237. 找出给定方程的正整数解

原题链接

难度:middle\color{orange}{middle}middle

2023/2/18 每日一题


题目描述

给你一个函数 f(x,y)f(x, y)f(x,y) 和一个目标结果 zzz,函数公式未知,请你计算方程 f(x,y)==zf(x,y) == zf(x,y)==z 所有可能的正整数 数对 xxxyyy。满足条件的结果数对可以按任意顺序返回。

尽管函数的具体式子未知,但它是单调递增函数,也就是说:

  • f(x,y)<f(x+1,y)f(x, y) < f(x + 1, y)f(x,y)<f(x+1,y)
  • f(x,y)<f(x,y+1)f(x, y) < f(x, y + 1)f(x,y)<f(x,y+1)

函数接口定义如下:

interface CustomFunction {
public:// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.int f(int x, int y);
};

你的解决方案将按如下规则进行评判:

  • 判题程序有一个由 CustomFunctionCustomFunctionCustomFunction999 种实现组成的列表,以及一种为特定的 zzz 生成所有有效数对的答案的方法。
  • 判题程序接受两个输入:functionidfunction_idfunctionid(决定使用哪种实现测试你的代码)以及目标结果 zzz
  • 判题程序将会调用你实现的 findSolutionfindSolutionfindSolution 并将你的结果与答案进行比较。
  • 如果你的结果与答案相符,那么解决方案将被视作正确答案,即 AcceptedAcceptedAccepted

示例 1:

输入:function_id = 1, z = 5
输出:[[1,4],[2,3],[3,2],[4,1]]
解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=4 -> f(1, 4) = 1 + 4 = 5
x=2, y=3 -> f(2, 3) = 2 + 3 = 5
x=3, y=2 -> f(3, 2) = 3 + 2 = 5
x=4, y=1 -> f(4, 1) = 4 + 1 = 5

示例 2:

输入:function_id = 2, z = 5
输出:[[1,5],[5,1]]
解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y
以下 x 和 y 满足 f(x, y) 等于 5:
x=1, y=5 -> f(1, 5) = 1 * 5 = 5
x=5, y=1 -> f(5, 1) = 5 * 1 = 5

提示:

  • 1<=functionid<=91 <= function_id <= 91<=functionid<=9
  • 1<=z<=1001 <= z <= 1001<=z<=100
  • 题目保证 f(x,y)==zf(x, y) == zf(x,y)==z 的解处于 1<=x,y<=10001 <= x, y <= 10001<=x,y<=1000 的范围内。
  • 1<=x,y<=10001 <= x, y <= 10001<=x,y<=1000 的前提下,题目保证 f(x,y)f(x, y)f(x,y) 是一个 32 位有符号整数。

算法

(暴力枚举) O(n2)O(n^2)O(n2)

  1. 枚举 xy,调用接口判断 f(x, y) 是否等于 z

  2. 如果等于 z,则加入答案中,如果大于 z,则终止掉内层循环。

复杂度分析

  • 时间复杂度:最坏情况下,需要判断每一个数对,故时间复杂度为 O(n2)O(n^2)O(n2)

  • 空间复杂度 : 需要存储答案,故空间复杂度也为 O(n2)O(n^2)O(n2)

C++ 代码

/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* public:*     // Returns f(x, y) for any given positive integers x and y.*     // Note that f(x, y) is increasing with respect to both x and y.*     // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)*     int f(int x, int y);* };*/class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;for (int x = 1; x <= 1000; x ++) for (int y = 1; y <= 1000; y ++) if (customfunction.f(x, y) == z) {res.push_back({x, y});}return res;}
};

  • 双指针
/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* public:*     // Returns f(x, y) for any given positive integers x and y.*     // Note that f(x, y) is increasing with respect to both x and y.*     // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)*     int f(int x, int y);* };*/class Solution {
public:vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {vector<vector<int>> res;int x = 1, y = 1000;while (x <= 1000 && y >= 1) {int t = customfunction.f(x, y);if (t > z) y --;else if (t < z) x ++;else {res.push_back({x, y});x ++, y --;}}return res;}
};

相关文章:

LeetCode 1237. 找出给定方程的正整数解

原题链接 难度&#xff1a;middle\color{orange}{middle}middle 2023/2/18 每日一题 题目描述 给你一个函数 f(x,y)f(x, y)f(x,y) 和一个目标结果 zzz&#xff0c;函数公式未知&#xff0c;请你计算方程 f(x,y)zf(x,y) zf(x,y)z 所有可能的正整数 数对 xxx 和 yyy。满足条件…...

【ArcGIS Pro二次开发】(5):UI管理_自定义控件的位置

新增的自定义控件一般放在默认的【加载项】选项卡下&#xff0c;但是根据需求&#xff0c;我们可能需要将控件放在新的自定义选项卡下&#xff0c;在自定义选项卡添加系统自带的控件&#xff0c;将自定义的按钮等控件放在右键菜单栏里以方便使用&#xff0c;等等。 下面就以一…...

学习OpenGL图形2D/3D编程

环境&#xff1a;WindowsVisual Studio 2019最流行的几个库&#xff1a;GLUT&#xff0c;SDL&#xff0c;SFML和GLFWGLFWGLAD库查看显卡OPENGL支持情况VS2019glfwgladopenGL3.3顶点着色器片段着色器VAO-VBO-(EBO)->渲染VAO-VBO-EBO->texture纹理矩阵matrix对图形transfor…...

2023美赛思路 | A题时间序列预测任务的模型选择总结

2023美赛思路 | A题时间序列预测任务的模型选择总结 目录 2023美赛思路 | A题时间序列预测任务的模型选择总结基本介绍数据描述任务介绍时序模型基本介绍 这道题分析植被就行,主要涉及不同植被间的相互作用,有竞争有相互促进,我查了下“植物科学数据中心”和“中国迁地保护植…...

PHP教材管理系统设计(源代码+毕业论文)

【P003】PHP教材管理系统设计&#xff08;源代码论文&#xff09; 设计方案 本系统采用B/S结构&#xff0c;所有的程序及数据都放在服务器上&#xff0c;终端在取得相应的权限后使用Web页面浏览&#xff0c;录入&#xff0c;修改等功能。在语言方面使用PHP语言&#xff0c;在…...

nps内网穿透工具

一、准备一台有公网ip的服务器 https://github.com/ehang-io/nps/releases 在这个地址下载服务端的安装包&#xff0c;centos的下载这个 上传到服务器上。 二、然后解压&#xff0c;安装&#xff0c;启动 [rootadministrator ~]# tar xzvf linux_amd64_server.tar.gz [roo…...

webpack打包时的热模块替代配置以及source-map

1.HMR 在devServer当中添加hot:true 热模块化功能 含义:当其中有一个文件发生变化的时候&#xff0c;那么就会被重新打包一次&#xff0c;极大的提高了构建速度 A.样式文件:可以使用HMR功能&#xff0c;因为在style-loader当中实现了 B.js文件:默认不能使用HMR功能&#xf…...

Seata架构篇 - TCC模式

TCC 模式 概述 TCC 是分布式事务中的两阶段提交协议&#xff0c;它的全称为 Try-Confirm-Cancel&#xff0c;即资源预留&#xff08;Try&#xff09;、确认操作&#xff08;Confirm&#xff09;、取消操作&#xff08;Cancel&#xff09;。Try&#xff1a;对业务资源的检查并…...

前端最全面试题整理

前端基础 一、 HTTP/HTML/浏览器 1、说一下 http 和 https https 的 SSL 加密是在传输层实现的。 (1) http 和 https 的基本概念 http: 超文本传输协议&#xff0c;是互联网上应用最为广泛的一种网络协议&#xff0c;是一个客户端和服务器端请求和应答的标准&#xff08;T…...

大数据之-Nifi-监控nifi数据流信息_监控数据来源_bub轻松复现---大数据之Nifi工作笔记0011

通过数据流功能可以轻松复现,数据的流向在某个时间点数据是怎么流动的,出现了什么问题,太强大了.. 真的是,可以看到通过右键,处理器,打开view data province就可以看到, 上面是处理器处理数据的详细信息 点击左侧的详情图标可以查看详情信息,details是这个事件处理的内容详情,…...

CUDA编程接口

编程接口 文章目录编程接口3.1利用NVCC编译3.1.1编译流程3.1.1.1 离线编译3.1.1.2 即时编译3.1.2 Binary 兼容性注意&#xff1a;仅桌面支持二进制兼容性。 Tegra 不支持它。 此外&#xff0c;不支持桌面和 Tegra 之间的二进制兼容性。3.1.3 PTX 兼容性3.1.4 应用程序兼容性3.1…...

惠普打印机使用

https://support.hp.com/cn-zh/product/hp-officejet-4500-all-in-one-printer-series-g510/3919445/document/c02076511HP 打印机 - 无法打印校准页本文适用于 HP 喷墨打印机。安装新墨盒后&#xff0c;打印机无法按预期打印校准页。步骤 1&#xff1a;确保打印机可以开始打印…...

Ubuntu升级cmake

目录 1、下载cmake安装包 2、开始安装 3、查看cmake版本 参考链接&#xff1a; https://blog.csdn.net/qq_27350133/article/details/121994229 1、下载cmake安装包 cmake安装包下载&#xff1a;download | cmake 我们根据自身需求下载所需版本的cmake安装包&#xff0c;这…...

CCNP350-401学习笔记(101-150题)

101、Refer to the exhibit SwitchC connects HR and Sales to the Core switch However, business needs require that no traffic from the Finance VLAN traverse this switch. Which command meets this requirement? A. SwitchC(config)#vtp pruning B. SwitchC(config)#…...

分享112个HTML娱乐休闲模板,总有一款适合您

分享112个HTML娱乐休闲模板&#xff0c;总有一款适合您 112个HTML娱乐休闲模板下载链接&#xff1a;https://pan.baidu.com/s/15uBy1SVSckPPMM55fiudeQ?pwdkqfz 提取码&#xff1a;kqfz Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 Bootstrap视频网站模板 …...

k8s快速入门

文章目录一、Kubernetes&#xff08;K8S&#xff09;简介1、概念1.1 Kubernetes (K8S) 是什么1.2 核心特性1.3 部署方案2、Kubernetes 集群架构2.1 架构2.2 重要概念 Pod2.3 Kubernetes 组件二、Kubernetes集群安装1、安装方式介绍2、minikubute安装3、裸机搭建&#xff08;Bar…...

NG ZORRO知识点总结

NG ZORRO的常用属性,包括但不限于,结合代码 <button nz-button [nzType]"primary" [nzSize]"large" [nzLoading]"loading" [nzDisabled]"disabled" (click)"onClick()">点击我</button>nz-button是一个按钮组件…...

go中的值方法和指针方法

go中的值方法和指针方法1前言2 不同类型的对象调用不同类型的方法2.1 值对象可以调用值方法和指针方法3 指针对象可以调用值方法和指针方法4 &#xff01;注意&#xff1a;结构体对象实现接口方法1前言 golang中在给结构体对象添加方法时&#xff0c;接收者参数类型可以有两种…...

OKR常见挑战以及应对方法探讨

背景 OKR是大家经常听到的一个词&#xff0c;也有不少团队说自己实行过&#xff0c;但每个实行过的团队都遇到过挑战。很多团队都感觉OKR有些空&#xff0c;很难落地&#xff0c;普通团队成员更是时常感觉无所适从&#xff0c;感觉就像看电影。2022年我们在更大的范围落地了OK…...

SpringAMQP消息队列(SpringBoot集成RabbitMQ)

一、初始配置1、导入maven坐标<!--rabbitmq--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId></dependency>2、yml配置spring:rabbitmq:host: 你的rabbitmq的ipport: …...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...