当前位置: 首页 > news >正文

sqlalchemy执行原生sql

# 有的复杂sql 用orm写不出来---》用原生sql查询

# 原生sql查询,查出的结果是对象
# 原生sql查询,查询结果列表套元组

 准备工作

from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engineengine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/db001", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()

执行原生sql方式一:

# 查询方式一:
cursor = session.execute('select * from users')
result = cursor.fetchall()
print(result) #列表套元组
# 添加
cursor = session.execute('insert into users(name,email) values(:name,:email)',params={"name": 'lqz', 'email': '3333@qq.com'})
session.commit()
print(cursor.lastrowid)

执行原生sql方式二:

(以后都用session操作---》socpe_session线程安全)一般不用

conn = engine.raw_connection()
cursor = conn.cursor()
cursor.execute("select * from app01_book"
)
result = cursor.fetchall()

执行原生sql方式三:

res = session.query(User).from_statement(text("SELECT * FROM boy where name=:name"))
.params(name='lqz').all()

相关文章:

sqlalchemy执行原生sql

# 有的复杂sql 用orm写不出来---》用原生sql查询 # 原生sql查询,查出的结果是对象 # 原生sql查询,查询结果列表套元组 准备工作 from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engineengine create_engine(&…...

Python-OpenCV中的图像处理-图像平滑

Python-OpenCV中的图像处理-图像平滑 图像平滑平均滤波高斯模糊中值模糊双边滤波 图像平滑 使用低通滤波器可以达到图像模糊的目的。这对与去除噪音很有帮助。其实就是去除图像中的高频成分(比如:噪音,边界)。所以边界也会被模糊…...

Mongoose http server 例子

今天抽了点时间看了一下 mongoose的源码, github 地址,发现跟以前公司内部使用的不太一样,这里正好利用其 http server 例子来看一下。以前的 http message 结构体是这样的: /* HTTP message */ struct http_message {struct mg_…...

1、初识HTML

1、初识HTML 前端就是写一些基本的页面,HTML即超文本标记语言:Hyper Text Markup Language,超文本包括,文字、图片、音频、视频、动画等,HTML5,提供了一些新的元素和一些有趣的新特性,同时也建…...

线性代数(三) 线性方程组

前言 如何利用行列式,矩阵求解线性方程组。 线性方程组的相关概念 用矩阵方程表示 齐次线性方程组:Ax0;非齐次线性方程组:Axb. 可以理解 齐次线性方程组 是特殊的 非齐次线性方程组 如何判断线性方程组的解 其中R(A)表示矩阵A的…...

Apoll 多项式规划求解

一、纵向规划 void QuarticPolynomialCurve1d::ComputeCoefficients(const float x0, const float dx0, const float ddx0, const float dx1,const float ddx1, const float p) {if (p < 0.0) {std::cout << "p should be greater than 0 at line 140." &…...

ssm亚盛汽车配件销售业绩管理统源码和论文PPT

ssm亚盛汽车配件销售业绩管理统源码和论文PPT007 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 研究的意义 汽车配件销售类企业近年来得到长足发展,在市场份额不断扩大同时…...

发布属于自己的 npm 包

1 创建文件夹&#xff0c;并创建 index.js 在文件中声明函数&#xff0c;使用module.exports 导出 2 npm 初始化工具包&#xff0c;package.json 填写包的信息&#xff08;包的名字是唯一的&#xff09; npm init 可在这里写包的名字&#xff0c;或者一路按回车&#xff0c;后…...

Redis主从复制和哨兵架构图,集成Spring Boot项目实战分享

目录 1. Redis 主从复制2. Redis 哨兵架构3. 集成spring boot项目案列 Redis 主从复制和哨兵架构是 Redis 集群的重要组成部分&#xff0c;用于提高 Redis 集群的可用性和性能。以下是 Redis 主从复制和哨兵架构的详细介绍&#xff0c;包括架构图和 Java 代码详解。 1. Redis …...

java中try-with-resources自动关闭io流

文章目录 java中try-with-resources自动关闭io流0 简要说明try-with-resources java中try-with-resources自动关闭io流 0 简要说明 在传统的输入输出流处理中&#xff0c;我们一般使用的结构如下所示&#xff0c;使用try - catch - finally结构捕获相关异常&#xff0c;最后不…...

Games101学习笔记 -光栅化

光栅化 经过MVP矩阵和视口变换后&#xff0c;我们就可以从相机的角度看到一个和屏幕大小一致的二维平面。 那么把这个看到的二维平面应用到我们的屏幕上的过程就是光栅化。在这儿我们需要补充一个概念-像素&#xff1a; 像素&#xff1a; 一个二位数组&#xff0c;数组中每个…...

Pytorch量化之Post Train Static Quantization(训练后静态量化)

使用Pytorch训练出的模型权重为fp32&#xff0c;部署时&#xff0c;为了加快速度&#xff0c;一般会将模型量化至int8。与fp32相比&#xff0c;int8模型的大小为原来的1/4, 速度为2~4倍。 Pytorch支持三种量化方式&#xff1a; 动态量化&#xff08;Dynamic Quantization&…...

Sql奇技淫巧之EXIST实现分层过滤

在这样一个场景&#xff0c;我 left join 了很多张表&#xff0c;用这些表的不同列来过滤&#xff0c;看起来非常合理 但是出现的问题是 left join 其中一张或多张表出现了笛卡尔积&#xff0c;且无法消除 FUNCTION fun_get_xxx_helper(v_param_1 VARCHAR2,v_param_2 VARCHAR2…...

Linux下升级jdk1.8小版本

先输入java -version 查看是否安装了jdk java -version &#xff08;1&#xff09;如果没有返回值&#xff0c;直接安装新的jdk即可。 &#xff08;2&#xff09;如果有返回值&#xff0c;例如&#xff1a; java version "1.8.0_251" Java(TM) SE Runtime Enviro…...

【Mysql】数据库基础与基本操作

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;命运给你一个低的起点&#xff0c;是想看你精彩的翻盘&#xff0c;而不是让你自甘堕落&#xff0c;脚下的路虽然难走&#xff0c;但我还能走&#xff0c;比起向阳而生&#xff0c;我更想尝试逆风…...

87 | Python人工智能篇 —— 机器学习算法 决策树

本教程将深入探讨决策树的基本原理,包括特征选择方法、树的构建过程以及剪枝技术,旨在帮助读者全面理解决策树算法的工作机制。同时,我们将使用 Python 和 scikit-learn 库演示如何轻松地实现和应用决策树,以及如何对结果进行可视化。无论您是初学者还是有一定机器学习经验…...

【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)

一、前言 如何快速搭建图像分割网络&#xff1f; 要手写把backbone &#xff0c;手写decoder 吗&#xff1f; 介绍一个分割神器&#xff0c;分分钟搭建一个分割网络。 仓库的地址&#xff1a; https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…...

解析湖仓一体的支撑技术及实践路径

自2021年“湖仓一体”首次写入Gartner数据管理领域成熟度模型报告以来&#xff0c;随着企业数字化转型的不断深入&#xff0c;“湖仓一体”作为新型的技术受到了前所未有的关注&#xff0c;越来越多的企业视“湖仓一体” 为数字化转型的重要基础设施。 01 数据平台的发展历程…...

40.利用欧拉法求解微分方程组(matlab程序)

1.简述 求解微分方程的时候&#xff0c;如果不能将求出结果的表达式&#xff0c;则可以对利用数值积分对微分方程求解&#xff0c;获取数值解。欧拉方法是最简单的一种数值解法。前面介绍过MATLAB实例讲解欧拉法求解微分方程&#xff0c;今天实例讲解欧拉法求解一阶微分方程组。…...

OpenAI-Translator 实战总结

最近在极客时间学习《AI 大模型应用开发实战营》&#xff0c;自己一边跟着学一边开发了一个进阶版本的 OpenAI-Translator&#xff0c;在这里简单记录下开发过程和心得体会&#xff0c;供有兴趣的同学参考 功能概览 通过openai的chat API&#xff0c;实现一个pdf翻译器实现一个…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...