当前位置: 首页 > news >正文

排序评估指标——NDCG和MAP

在搜索和推荐任务中,系统常返回一个item列表。如何衡量这个返回的列表是否优秀呢?

例如,当我们检索【推荐排序】,网页返回了与推荐排序相关的链接列表。列表可能会是[A,B,C,G,D,E,F],也可能是[C,F,A,E,D],现在问题来了,当系统返回这些列表时,怎么评价哪个列表更好?

这就引出了这篇文章要介绍的两个评价指标——NDCG和MAP,这两个指标都是用来评估排序结果的。

1. NDCG

NDCG的全称是:Normalized Discounted Cumulative Gain(归一化折损累计增益)学习NDCG最好按照G-CG-DCG-NDCG这个顺序来学习。

  • Gain:表示一个列表中所有item的相关性分数。rel(i)表示item(i)相关性得分。

    Gain=rel(i)Gain = rel(i)Gain=rel(i)

  • Cumulative Gain:表示对K个item的Gain进行累加。

    CGk=∑i=1krel(i)CG_k = \sum_{i=1}^krel(i)CGk=i=1krel(i)

    CG只是单纯累加相关性,不考虑位置信息。

    如果返回一个list_1= [A,B,C,D,E],那list_1的CG为0.5+0.9+0.3+0.6+0.1=2.4

    如果返回一个list_2=[D,A,E,C,B],那list_2的CG为0.6+0.5+0.1+0.3+0.9=2.4

    所以,顺序不影响CG得分。如果我们想评估不同顺序的影响,就需要使用另一个指标DCG来评估。

  • Discounted Cumulative Gain: 考虑排序顺序的因素,使得排名靠前的item增益更高,对排名靠后的item进行折损。

    CG与顺序无关,而DCG评估了顺序的影响。DCG的思想是:list中item的顺序很重要,不同位置的贡献不同,一般来说,排在前面的item影响更大,排在后面的item影响较小。(例如一个返回的网页,肯定是排在前面的item会有更多人点击)。所以,相对CG来说,DCG使排在前面的item增加其影响,排在后面的item减弱其影响。

    DCGk=∑i=1krel(i)log2(i+1)DCG_k = \sum_{i = 1}^k\frac{rel(i)}{log_2(i+1)}DCGk=i=1klog2(i+1)rel(i)

    怎么实现这个思想呢?DCG在CG的基础上,给每个item的相关性比上log2(i+1),i越大,log2(i+1)的值越大,相当于给每个item的相关性打个折扣,item越靠后,折扣越大。

    还是上面那个例子:

    list_1=[A,B,C,D,E], 其对应计算如下:

    irel(i)log(i+1)rel(i)/log(i+1)
    1=A0.510.5
    2=B0.91.590.57
    3=C0.320.15
    4=D0.62.320.26
    5=E0.12.590.04

    list_1的 DCG_1= 0.5+0.57+0.15+0.26+0.04=1.52

    list_2=[D,A,E,C,B],其对应计算如下:

    irel(i)log(i+1)rel(i)/log(i+1)
    1=D0.610.6
    2=A0.51.590.31
    3=E0.120.05
    4=C0.32.320.13
    5=B0.92.590.35

    list_2的 DCG_2= 0.6+0.31+0.05+0.13+0.35=1.44

    DCG_1 > DCG_2, 所以在这个例子里list_1优于list_2。

    到这里,我们可以知道,使用DCG方法就可以对不同的list进行评估,那为什么后面还有一个NDCG呢?

  • NDCG(Normalized DCG): 归一化折损累计增益

    在NDCG之前,先了解一些IDGC(ideal DCG)–理想的DCG,IDCG的依据是:是根据rel(i)降序排列,即排列到最好状态。算出最好排列的DCG,就是IDCG。

    IDCG=最好排列的DCG

    对于上述的例子,按照rel(i)进行降序排列的最好状态为list_best=[B,D,A,C,E]

    irel(i)log(i+1)rel(i)/log(i+1)
    1=B0.910.9
    2=D0.61.590.38
    3=A0.520.25
    4=C0.32.320.13
    5=E0.12.590.04

    IDCG = list_best的DCG_best = 0.9+0.38+0.25+0.13+0.04=1.7 (理所当然,IDCG>DCG_1和DCG_2)

    因为不同query的搜索结果有多有少,所以不同query的DCG值就没有办法来做对比。所以提出NDCG。

    NDCG=DCGIDCGNDCG = \frac{DCG}{IDCG}NDCG=IDCGDCG

    所以NDGC使用DCG/IDCG来表示,这样的话,NDCG就是一个相对值,那么不同query之间就可以通过NDCG值进行比较评估。

2. MAP

要学习MAP指标首先要了解Precision这个指标,即精确度。在推荐系统场景下,我们可以定义正样本为相关的商品,因此Precision就代表了,推荐的 n 个商品中,有多少个商品是相关的。而Recall就代表了数据库中一共有 m个相关商品,推荐系统选出了多少个相关商品。

例如下面的理财产品推荐场景,用户在未来购买了四款产品,而一个推荐系统在当前推荐了三款产品,用户只购买了一款产品。那么此时,推荐系统的Recall为 1/4 ,Precision为 1/3。

在这里插入图片描述
值得注意的是,由于屏幕大小限制,推荐系统只能展示前 N 个商品,因此一般推荐系统中的Precision计算会采用Cutoff形式进行计算。如下图所示,尽管我们的推荐系统可以推荐 m个商品,但是在Cutoff-Precision的计算过程中,只会考虑前 k 个商品的Precision。

在这里插入图片描述
根据上面的概念,我们就可以定义Average Precision。从公式中可以看出,AP@N可以直观理解为枚举Precision@k之后取平均值。

第k个item的precision是指前k个推荐的item里被用户pick的item有几个

在推荐系统场景下,使用AP最大的好处在于AP不仅仅考虑了商品推荐的准确率,还考虑了推荐顺序上的差异。考虑下面这样一个表格,从整体来考虑的话,三种推荐方案都只推荐了一个相关商品,但是第一种推荐方案明显是更好的,而AP指标可以体现这种差异。

介绍了AP@N指标,我们就可以定义MAP@N指标了。其实MAP@N指标就是将所有用户 UUU 的AP@N指标进行平均。

总的来说,MAP指标同时考虑了预测精准度和相对顺序,从而避免了传统Precision指标无法刻画推荐商品相对位置差异的弊端。因此。在很多推荐系统场景下,MAP指标是一个非常值得尝试的推荐系统评估指标。

参考1:知乎Satellite
参考2:知乎震灵

相关文章:

排序评估指标——NDCG和MAP

在搜索和推荐任务中,系统常返回一个item列表。如何衡量这个返回的列表是否优秀呢? 例如,当我们检索【推荐排序】,网页返回了与推荐排序相关的链接列表。列表可能会是[A,B,C,G,D,E,F],也可能是[C,F,A,E,D],现在问题来了…...

[Android Studio] Android Studio Virtual Device(AVD)虚拟机的功能试用

🟧🟨🟩🟦🟪 Android Debug🟧🟨🟩🟦🟪 Topic 发布安卓学习过程中遇到问题解决过程,希望我的解决方案可以对小伙伴们有帮助。 🚀write…...

kafka-3-kafka应用的核心要点和内外网访问

kafka实战教程(python操作kafka),kafka配置文件详解 Kafka内外网访问的设置 1 kafka简介 根据官网的介绍,ApacheKafka是一个分布式流媒体平台,它主要有3种功能: (1)发布和订阅消息流,这个功能类似于消息队列&#x…...

VS2017+OpenCV4.5.5 决策树-评估是否发放贷款

决策树是一种非参数的监督学习方法,主要用于分类和回归。 决策树结构 决策树在逻辑上以树的形式存在,包含根节点、内部结点和叶节点。 根节点:包含数据集中的所有数据的集合内部节点:每个内部节点为一个判断条件,并且…...

Prometheus 记录规则和警报规则

前提环境&#xff1a; Docker环境 涉及参考文档&#xff1a; Prometheus 录制规则Prometheus 警报规则 语法检查规则 promtool check rules /path/to/example.rules.yml一&#xff1a;录制规则语法 groups 语法&#xff1a; groups:[ - <rule_group> ]rule_group…...

(API)接口测试的关键技术

接口测试也就是API测试&#xff0c;从名字上可以知道是面向接口的测试活动。所以在讲API测试之前&#xff0c;我们应该说清楚接口是什么&#xff0c;那么接口就是有特定输入和特定输出的一套逻辑处理单元&#xff0c;而对于接口调用方来说&#xff0c;不用知道自身的内部实现逻…...

快速排序算法原理 Quicksort —— 图解(精讲) JAVA

快速排序是 Java 中 sort 函数主要的排序方法&#xff0c;所以今天要对快速排序法这种重要算法的详细原理进行分析。 思路&#xff1a;首先快速排序之所以高效一部分原因是利用了离散数学中的传递性。 例如 1 < 2 且 2 < 3 所以可以推出 1 < 3。在快速排序的过程中巧…...

linux环境搭建私有gitlab仓库

搭建之前&#xff0c;需要安装相应的依赖包&#xff0c;并且要启动sshd服务(1).安装policycoreutils-python openssh-server openssh-clients [rootVM-0-2-centos ~]# sudo yum install -y curl policycoreutils-python openssh-server openssh-clients [rootVM-0-2-centos ~]…...

SpringSecurity授权

文章目录工具类使用自定义失败处理代码配置跨域其他权限授权hasAnyAuthority自定义权限校验方法基于配置的权限控制工具类 import javax.servlet.http.HttpServletResponse; import java.io.IOException;public class WebUtils {/*** 将字符串渲染到客户端** param response 渲…...

学习 Python 之 Pygame 开发坦克大战(一)

学习 Python 之 Pygame 开发坦克大战&#xff08;一&#xff09;Pygame什么是Pygame?初识pygame1. 使用pygame创建窗口2. 设置窗口背景颜色3. 获取窗口中的事件4. 在窗口中展示图片(1). pygame中的直角坐标系(2). 展示图片(3). 给部分区域设置颜色5. 在窗口中显示文字6. 播放音…...

2.5|iot冯|方元-嵌入式linux系统开发入门|2.13+2.18

一、 Linux 指令操作题&#xff08;共5题&#xff08;共 20 分&#xff0c;每小题 4分&#xff09;与系统工作、系统状态、工作目录、文件、目录、打包压缩与搜索等主题相关。1.文件1.1文件属性1.2文件类型属性字段的第1个字符表示文件类型&#xff0c;后9个字符中&#xff0c;…...

一起Talk Android吧(第四百九十六回:自定义View实例二:环形进度条)

文章目录 知识回顾实现思路实现方法示例代码各位看官们大家好,上一回中咱们说的例子是"如何使用Java版MQTT客户端",这一回中咱们说的例子是"自定义View实例二:环形进度条"。闲话休提,言归正转,让我们一起Talk Android吧! 知识回顾 看官们,我们又回…...

上传图片尺寸校验

使用方法 ● Image ● URL ● onload代码&#xff1a; async validImageSize(file, imgWidth, imgHeight) {const img new Image()img.src URL.createObjectURL(file)const { w, h } await new Promise((resolve, reject) > {img.onload () > {const { width: w, he…...

【Python】缺失值处理和拉格朗日插值法(含源代码实现)

目录&#xff1a;缺失值处理和拉格朗日插值法一、前言二、理论知识三、代码实现一、前言 对于含有缺失值的数据集&#xff0c;如果通过删除小部分记录达到既定的目标&#xff0c;那么删除含有缺失值的记录的方法是最有效的。然而&#xff0c;这种方法也有很多问题&#xff0c;…...

SpringCloudAlibaba-Sentinel

一、介绍官网&#xff1a;https://github.com/alibaba/Sentinel/下载jar包,启动,访问http://localhost:8080/创建module添加如下依赖<!--SpringCloud ailibaba sentinel --><dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring…...

【程序化天空盒】过程记录02:云扰动 边缘光 消散效果

写在前面 写在前面唉&#xff0c;最近筋疲力竭&#xff0c;课题组的东西一堆没做&#xff0c;才刚刚开始带着思考准备练习作品&#xff0c;从去年5月份开始到现在真得学了快一年了&#xff0c;转行学其他的真的好累&#xff0c;&#xff0c;不过还是加油&#xff01; 下面是做…...

链表OJ(三) 反转链表合集

目录 反转链表 反转链表 II 链表中的节点每k个一组翻转 描述 给定一个单链表的头结点pHead(该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1)&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 数据范围&#xff1a; 0≤n≤10000≤…...

SQLSERVER2019安装步骤过程

第一步官网下载SQLSERVER软件包 目前官网只能下载最新版本2022版本。 通过迅雷下载网址 SQL Server 2019 Enterprise (x64) - DVD (Chinese-Simplified)企业版 ed2k://|file|cn_sql_server_2019_enterprise_x64_dvd_2bfe815a.iso|1632086016|58C258FF0F1D006DD3C1F5F17AF3E…...

Java模块化概述

3 模块化 3.1 模块化概述 Java语言随着这些年的发展已经成为了一]影响深远的编程语言&#xff0c;无数平台,系统都采用Java语言编写。但是&#xff0c;伴随着发展&#xff0c;Java也越来越庞大&#xff0c;逐渐发展成为-门“臃肿” 的语言。而且&#xff0c;无论是运行个大型的…...

Connext DDSPersistence Service持久性服务(2)

可选数据库组件及兼容性当Persistence Service配置为PERSISTENT模式时,您可以选择将主题数据存储在文件中还是存储在外部关系数据库中。 唯一支持的外部数据库是MySQL。 当PersistenceService在PERSISTENT模式下使用时,您可以将其配置为将DDS样本存储到关系数据库中,例如MyS…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP&#xff0c;结果IP质量不佳&#xff0c;项目效率低下不说&#xff0c;还可能带来莫名的网络问题&#xff0c;是不是太闹心了&#xff1f;尤其是在面对海外专线IP时&#xff0c;到底怎么才能买到适合自己的呢&#xff1f;所以&#xff0c;挑IP绝对是个技…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...