【修正-高斯拉普拉斯滤波器-用于平滑和去噪】基于修正高斯滤波拉普拉斯地震到达时间自动检测研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
🌈4 Matlab代码、数据、文章
💥1 概述
文献来源:

摘要:
精确识别地震的开始时间对于正确计算地震的位置和用于构建地震目录的不同参数至关重要。由于背景噪声,无法精确确定弱事件或微地震的P波到达检测。在本文中,我们提出了一种基于改进的高斯拉普拉斯(MLoG)滤波器的新方法,即使在信噪比(SNR)非常弱的情况下也能检测开始时间。该算法利用去噪滤波算法对背景噪声进行平滑处理。在所提出的算法中,我们使用MLoG掩模来过滤地震数据。之后,我们应用双阈值比较器来检测事件的开始时间。结果表明,所提算法能够准确检测微地震的起始时间,信噪比为−12 dB。该算法对93个场地震波形的起始时间拾取精度为0%,标准差误差为10.407 s。此外,我们将结果与短时间和长时间平均算法(STA/LTA)和赤池信息准则(AIC)进行了比较,所提出的算法优于它们。
原文摘要:
Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of −12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.
地震被认为是世界各地的主要地质灾害。一个关键的安全问题是保护人们免受地震引起的化学和核辐射泄漏的影响。因此,在地震间隔期间应保护化学源、核源和石油输送线。地震预警系统(EEWS)用于向暴露于地震威胁的人们发出警报。理想情况下,此警报应在地震发生后不久,在更具破坏性的剪切(S)和表面(瑞利和/或洛夫)波到来之前发布。在EEWS中,必须准确选择地震的P到达时间才能发出警报。因此;高精度的实时自动拣选算法对于支持EEWS中的快速决策至关重要。
地震分析中的重要步骤之一是检测地震的开始时间。根据检测结果,确定地震位置和几个参数。然而,随着地震图数据库规模的增加,手动拣选变得更加困难。因此;地震开始时间的自动拾取算法变得必要。此外,选择开始时间的重要问题之一是地震噪声的存在。微地震数据通常以低信噪比(SNR)为特征。对于低信噪比数据,手动选择起始时间变得更具挑战性和不可靠性。在这种环境下,可能会产生一些误报,或者由于背景噪声和地震信号之间的区分存在问题,可能会出现不准确的起始时间选择。因此,已经提出了许多算法来提高自动拣选的准确性。
📚2 运行结果



主函数代码:
clc
clear
close all
%load Input example
load x_Example
% Sigma and Filter Order of MLOG
% Tune sigma, and N according to the application you want to use.
% For smoothing the background noise in DOI:
% The optimum parameters are :
sigma = 2.5;
N = 10;
% Call MLOG and stores the cofficients in Gaussian_1D_2_Diff_Modified
% MLOG
% [Gaussian_1D_2_Diff_Modified]=MLOG(sigma,N);
% For More Scaling dividing by sigma.
[Gaussian_1D_2_Diff_Modified]=MLOG(sigma,N) /sigma;
% Filtering The Input (Denoising the Input Signal)
Output = filter (Gaussian_1D_2_Diff_Modified,1,x);
% Output Squaring
Output = Output.^2;
% For more smoothing, average movabale window is obatined for m samples
% with k stride (moving by k samples)
% Adjustce m, and k according to the application you want to use.
Output_More_Smoothing = zeros(1,size(x,2));
m = 8;
k = 1;
count = 1;
for j=1:k:(length(Output))-max([m k])
Output_More_Smoothing(count)=(mean(Output(j:j+m-1)));
count = count +1;
end
% Plotting
% Plotting the Cofficients of MLOG.
figure(1)
plot( (1:N), Gaussian_1D_2_Diff_Modified, 'LineWidth',3)
xlabel('Index (n)','FontSize',14,'FontWeight','bold')
ylabel('MLOG Mask Values','FontSize',14,'FontWeight','bold')
title('MLOG MASK','FontSize',14,'FontWeight','bold')
set(gca,'fontsize',12,'FontWeight','bold')
% Plotting Input, Output of MLOG, and Smoothed Output Signal.
figure(2)
subplot(3,1,1),plot(1:length(x),x)
xlabel('Sample Index','FontSize',14,'FontWeight','bold')
ylabel('Count','FontSize',14,'FontWeight','bold')
title('Input Seismic Event','FontSize',14,'FontWeight','bold')
set(gca,'fontsize',12,'FontWeight','bold')
subplot(3,1,2),plot(1:length(Output), Output)
xlabel('Sample Index','FontSize',14,'FontWeight','bold')
ylabel('Count^2','FontSize',14,'FontWeight','bold')
title('Output Signal of MLOG Filter','FontSize',14,'FontWeight','bold')
set(gca,'fontsize',12,'FontWeight','bold')
subplot(3,1,3),plot(1:length(Output_More_Smoothing), Output_More_Smoothing)
xlabel('Sample Index','FontSize',14,'FontWeight','bold')
ylabel('Count^2','FontSize',14,'FontWeight','bold')
title('Smoothed Output Signal','FontSize',14,'FontWeight','bold')
set(gca,'fontsize',12,'FontWeight','bold')
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码、数据、文章
相关文章:
【修正-高斯拉普拉斯滤波器-用于平滑和去噪】基于修正高斯滤波拉普拉斯地震到达时间自动检测研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
Go语言基础: 有参函数Func、Map、Strings详细案例教程
目录标题 一、Variadic Functions1.Syntax2.Examples and understanding how variadic functions work3.Slice arguments vs Variadic arguments 仅改变可变参数4.Gotcha 二、Map1.Create a Map2.Retrieving value for a key from a map3.Checking if a key exists4.Iterate ov…...
JDBC连接数据库如何实现你会吗???
1.首先建立一个maven项目。。。详细过程来了哇 还没有安装maven的童鞋可以看这里:maven的下载安装与配置环境变量!!!(全网最详细)_明天更新的博客-CSDN博客 有很多小伙伴就有疑问啦,难道我直接…...
C#与C++交互(2)——ANSI、UTF8、Unicode文本编码
【前言】 我们知道计算机上只会存储二进制的数据,无论文本、图片、音频、视频等,当我们将其保存在计算机上时,都会被转成二进制的。我们打开查看的时候,二进制数据又被转成我们看得懂的信息。如何将计算机上的二进制数据转为我们…...
SQLSTATE[42000]: this is incompatible with sql_mode=only_full_group_by in
执行 SELECT *FROM test WHERE id>1 GROUP BY name having AVG(age)>10 ORDER BY id desc limit 1 提示错误 Fatal error: Uncaught PDOException: SQLSTATE[42000]: Syntax error or access violation: 1055 Expression #1 of SELECT list is not in GROUP BY clause…...
企业权限管理(五)-订单分页
订单分页查询 PageHelper介绍 PageHelper是国内非常优秀的一款开源的mybatis分页插件,它支持基本主流与常用的数据库,例如mysql、oracle、mariaDB、DB2、SQLite、Hsqldb等。 PageHelper使用 集成 引入分页插件有下面2种方式,推荐使用 Maven …...
Blender如何给fbx模型添加材质贴图并导出带有材质贴图的模型
推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 此教程适合新手用户,专业人士直接可直接绕路。 本教程中介绍了利用Blender建模软件,只需要简单几步就可以为模型添加材质贴,图,并且导出带有材质的模型文…...
MySQL不走索引的情况分析
未建立索引 当数据表没有设计相关索引时,查询会扫描全表。 create table test_temp (test_id int auto_incrementprimary key,field_1 varchar(20) null,field_2 varchar(20) null,field_3 bigint null,create_date date null );expl…...
安装ubuntu22.04系统,配置国内源以及ssh远程登录
一、安装ubuntu22.04系统 原文连接:Ubuntu操作系统22.04版本安装教程-VMware虚拟机_wx63f86e949a470的技术博客_51CTO博客 1.点击界面左侧的开启此虚拟机,即可进入Ubuntu操作系统安装界面,点击Try or Install Ubuntu 即可开始安装 …...
win10 安装ubuntu子系统并安装宝塔
1、安装子系统 2、ubuntu 中安装宝塔 这里需要注意的: 大部分文章上写的是“面板账户登录信息”不能直接访问,要改成127.0.0.1:8888去访问。 这种情况适合“面板账户登录信息”端口就是8888。 想我的就是32757 这时你就要用 http://127.0.0…...
gazebo 导入从blender导出的dae等文件
背景: gazebo 模型库里的模型在我需要完成的任务中不够用,还是得从 solidworks、3DMax, blender这种建模软件里面在手动画一些,或者去他们的库里面在挖一挖。 目录 1 blender 1-1 blender 相关links 1-2 install 2 gazebo导入模型 2-1 g…...
目标检测YOLOv3基于DarkNet53模型测试-笔记
目标检测YOLOv3基于DarkNet53模型测试-笔记 预测和试测结果: 预测代码如下所示: testInsects.py #YOLOv3网模型测试-单图片文件测试并显示测试结果 import time import os import paddle import numpy as np import cv2 import random from PIL impor…...
Unity项目中查找所有使用某一张图片的材质球,再查找所有使用材质球的预设
废话少说,直接上代码。 using UnityEditor; using UnityEngine;public class FindDependencies : MonoBehaviour {static bool m_bIsSaveFile false;static TextWriteHelper m_szMaterialList new TextWriteHelper();static TextWriteHelper m_szPrefabList new…...
postman接口测试中文汉化教程
想必同学们对于接口测试工具postman的使用并不陌生,以及最近大为流行的国产工具apifox。对于使用过的同学来说,两者区别以及优缺点很容易别展示出来,postman相比apifox来说更加轻量,但是apifox更加符合国人的使用习惯....中国人给…...
java.lang.ClassNotFoundException: com.mysql.cj.jdbc.Driver的解决办法
springcloudAlibaba项目连接mysql时(mysql版本8.0.31,Springboot2.2.2,spring cloud Hoxton.SR1,spring cloud alibaba 2.1.0.RELEASE),驱动名称报红,配置如下: 原因:引入的jdbc驱动包和使用的m…...
认识所有权
专栏简介:本专栏作为Rust语言的入门级的文章,目的是为了分享关于Rust语言的编程技巧和知识。对于Rust语言,虽然历史没有C、和python历史悠远,但是它的优点可以说是非常的多,既继承了C运行速度,还拥有了Java…...
恒盛策略:怎样看k线图实图详解如何看懂k线图?
K线图是股票剖析中常用的一种图表,它能够反映一段时间内股票价格的变化状况,对于股票投资者来说非常重要。但是,由于k线图并不是很好理解,很多投资者并不知道怎样看懂它。那么,咱们就从多个视点来看看怎样看k线图实图&…...
物联网的定义、原理、示例、未来
什么是物联网? 物联网 (IoT) 是指由嵌入传感器、软件和网络连接的物理设备、车辆、电器和其他物理对象组成的网络,允许它们收集和共享数据。这些设备(也称为“智能对象”)的范围可以从简单的“智能家居”设备(如智能恒温器)到可穿戴设备(如智能手表和支持RFID的服…...
Vue 整合 Element UI 、路由嵌套和参数传递(五)
一、整合 Element UI 1.1 工程初始化 使用管理员的模式进入 cmd 的命令行模式,创建一个名为 hello-vue 的工程,命令为: # 1、目录切换 cd F:\idea_home\vue# 2、项目的初始化,记得一路的 no vue init webpack hello-vue 1.2 安装…...
Git全栈体系(四)
第七章 IDEA 集成 Git 一、配置 Git 忽略文件 1. Eclipse 特定文件 2. IDEA 特定文件 3. Maven 工程的 target 目录 4. 问题 4.1 为什么要忽略他们? 与项目的实际功能无关,不参与服务器上部署运行。把它们忽略掉能够屏蔽 IDE 工具之间的差异。 4.2 …...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
前端调试HTTP状态码
1xx(信息类状态码) 这类状态码表示临时响应,需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分,客户端应继续发送剩余部分。 2xx(成功类状态码) 表示请求已成功被服务器接收、理解并处…...

