当前位置: 首页 > news >正文

数学建模学习(9):模拟退火算法

模拟退火算法(Simulated Annealing, SA)的思想借 鉴于固体的退火原理,当固体的温度很高的时候,内能比
较大,固体的内部粒子处于快速无序运动,当温度慢慢降 低的过程中,固体的内能减小,粒子的慢慢趋于有序,最
终,当固体处于常温时,内能达到最小,此时,粒子最为 稳定。模拟退火算法便是基于这样的原理设计而成。

在这里插入图片描述模拟退火算法过程
(1)随机挑选一个单元k,并给它一个随机的位移,求出系统因此而产生的能
量变化ΔEk。
(2)若ΔEk⩽ 0,该位移可采纳,而变化后的系统状态可作为下次变化的起点;
若ΔEk>0,位移后的状态可采纳的概率为
在这里插入图片描述
式中T为温度,然后从(0,1)区间均匀分布的随机数中挑选一个数R,若R<Pk,
则将变化后的状态作为下次的起点;否则,将变化前的状态作为下次的起点。
(3)转第(1)步继续执行,知道达到平衡状态为止。
在这里插入图片描述
利用模拟退火算法工具箱求解问题:

%%
clc;clear;
%%普通的目标函数
fun = @dejong5fcn %目标函数
%[x,fval] = simulannealbnd(fun,[0,0])%[0,0]凭经验猜测的初始值,没有的话,随意写就行
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf})
x0 = [0,0];
lb = [-64,-64];%下限
ub = [64,64];%下限
[x,fval] = simulannealbnd(fun,x0,lb,ub,options);
%%
求:
% min f(x) = (4 - 2.1*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-4 + 4*x2^2)*x2^2;
% 写成函数形式
% function y = simple_objective(x)
%    y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
%%
fun = @simple_objective;%注意需要将其放在最前面
X0 = [0.5 0.5];   % 初始点
lb = [-64 -64];
ub = [64 64];
[x,fval,exitFlag,output] = simulannealbnd(fun,X0,lb,ub);
fprintf('The number of iterations was : %d\n', output.iterations);
fprintf('The number of function evaluations was : %d\n', output.funccount);
fprintf('The best function value found was : %g\n', fval);
%%%  求:
% min f(x) = (a - b*x1^2 + x1^4/3)*x1^2 + x1*x2 + (-c + c*x2^2)*x2^2;
% 
% 写成函数形式
% function y = parameterized_objective(x,a,b,c)
%    y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-c + c*x(2)^2)*x(2)^2;
%%带有常数的目标函数
a = 4; b = 2.1; c = 4;    % define constant values
fun = @(x) parameterized_objective(x,a,b,c);
X0 = [0.5 0.5];
options = saoptimset('PlotFcns',{@saplotbestx,@saplotbestf,@saplotx,@saplotf})
[x,fval] = simulannealbnd(fun,X0,options)
%自定义目标函数1
function y = parameterized_objective(x,a,b,c)y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-c + c*x(2)^2)*x(2)^2;
end
%自定义目标函数2
function y = simple_objective(x)y = (4 - 2.1*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + (-4 + 4*x(2)^2)*x(2)^2;
end

运行效果
在这里插入图片描述

相关文章:

数学建模学习(9):模拟退火算法

模拟退火算法(Simulated Annealing, SA)的思想借 鉴于固体的退火原理&#xff0c;当固体的温度很高的时候&#xff0c;内能比 较大&#xff0c;固体的内部粒子处于快速无序运动&#xff0c;当温度慢慢降 低的过程中&#xff0c;固体的内能减小&#xff0c;粒子的慢慢趋于有序&a…...

带你认识储存以及数据库新技术演进

01经典案例 1.0 潜在问题 02存储&数据库简介 2.1 存储器层级架构 2.1 数据怎么从应用到存储介质 2.1 RAID技术 2.2 数据库 数据库分为 关系型数据库 和 非关系型数据库 2.2.2 非关系型 2.2.1 关系型 2.3 数据库 vs 经典存储-结构化数据管理 2.3.1 数据库 vs 经典存储-事务能…...

腾讯云服务器镜像操作系统大全_Linux_Windows清单

腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像&#xff0c;公共镜像包含基础操作系统和腾讯云提供的初始化组件&#xff0c;公共镜像分为Windows和Linux两大类操作系统&#xff0c;如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…...

基于k8s job设计与实现CI/CD系统

方案一&#xff1a;Jenkinsk8sCICD 方案二&#xff1a;kanikok8s jobCICD CICD 基于K8s Job设计流水线 CI方案 工具镜像 云原生镜像打包工具 kaniko的使用 与Jenkins对比 可用性与易用性...

⌈算法进阶⌋图论::并查集——快速理解到熟练运用

目录 一、原理 1. 初始化Init 2. 查询 find 3. 合并 union 二、代码模板 三、练习 1、 990.等式方程的可满足性&#x1f7e2; 2、 1061. 按字典序排列最小的等效字符串&#x1f7e2; 3、721.账户合并 &#x1f7e1; 4、 839.相似字符串组&#x1f7e1; 5、 2812.找出最安全…...

【ROS】fsd_algorithm架构学习与源码分析(致敬)

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍fsd_algorithm架构学习与源码分析。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…...

PHP最简单自定义自己的框架定义常量自动生成目录(三)

1、框架入口增加模块定义&#xff0c;实现多模块功能 index.php 定义模块 <?php //定义当前请求模块 define("MODULE",index); require "./core/KJ.php"; 创建后台模块admin.php <?php define("MODULE",admin); require "./cor…...

栈和队列详解

目录 栈 栈的概念及结构&#xff1a; 栈的实现&#xff1a; 代码实现&#xff1a; Stack.h stack.c 队列&#xff1a; 概念及结构&#xff1a; 队列的实现&#xff1a; 代码实现&#xff1a; Queue.h Queue.c 拓展&#xff1a; 循环队列&#xff08;LeetCode题目链接&#xff0…...

数据结构 | 树的定义及实现

目录 一、树的术语及定义 二、树的实现 2.1 列表之列表 2.2 节点与引用 一、树的术语及定义 节点&#xff1a; 节点是树的基础部分。它可以有自己的名字&#xff0c;我们称作“键”。节点也可以带有附加信息&#xff0c;我们称作“有效载荷”。有效载荷信息对于很多树算法…...

Delphi7通过VB6之COM对象调用FreeBASIC写的DLL功能

VB6写ActiveX COM组件比较方便&#xff0c;不仅PowerBASIC与VB6兼容性好&#xff0c;Delphi7与VB6兼容性也不错&#xff0c;但二者与FreeBASIC兼容性在字符串处理上差距比较大&#xff0c;FreeBASIC是C化的语言&#xff0c;可直接使用C指令。下面还是以实现MKI/CVI, MKL/CVL, M…...

【Linux 网络】NAT技术——缓解IPv4地址不足

NAT技术 NAT 技术背景NAT IP转换过程NAPTNAT 技术的缺陷 NAT&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09;技术&#xff0c;是解决IP地址不足的主要手段&#xff0c;并且能够有效地避免来自网络外部的攻击&#xff0c;隐藏并保护网络内部的计算…...

Flink 两阶段提交(Two-Phase Commit)协议

Flink 两阶段提交&#xff08;Two-Phase Commit&#xff09;是指在 Apache Flink 流处理框架中&#xff0c;为了保证分布式事务的一致性而采用的一种协议。它通常用于在流处理应用中处理跨多个分布式数据源的事务性操作&#xff0c;确保所有参与者&#xff08;数据源或计算节点…...

【Docker晋升记】No.2 --- Docker工具安装使用、命令行选项及构建、共享和运行容器化应用程序

文章目录 前言&#x1f31f;一、Docker工具安装&#x1f31f;二、Docker命令行选项&#x1f30f;2.1.docker run命令选项&#xff1a;&#x1f30f;2.2.docker build命令选项&#xff1a;&#x1f30f;2.3.docker images命令选项&#xff1a;&#x1f30f;2.4.docker ps命令选项…...

[OnWork.Tools]系列 00-目录

OnWork.Tools系列文章目录 OnWork.Tools系列 01-简介_末叶的博客-CSDN博客OnWork.Tools系列 02-安装_末叶的博客-CSDN博客OnWork.Tools系列 03-软件设置_末叶的博客-CSDN博客OnWork.Tools系列 04-快捷启动_末叶的博客-CSDN博客OnWork.Tools系列 05-系统工具_末叶的博客-CSDN博…...

Cadvisor+InfluxDB+Grafan+Prometheus(详解)

目录 一、CadvisorInfluxDBGrafan案例概述 &#xff08;一&#xff09;Cadvisor Cadvisor 产品特点&#xff1a; &#xff08;二&#xff09;InfluxDB InfluxDB应用场景&#xff1a; InfluxDB主要功能&#xff1a; InfluxDB主要特点&#xff1a; &#xff08;三&#…...

AtcoderABC222场

A - Four DigitsA - Four Digits 题目大意 给定一个整数N&#xff0c;其范围在0到9999之间&#xff08;包含边界&#xff09;。在将N转换为四位数的字符串后&#xff0c;输出它。如果N的位数不足四位&#xff0c;则在前面添加必要数量的零。 思路分析 可以使用输出流的格式设…...

架构实践方法

一、识别复杂度 将主要的复杂度问题列出来&#xff0c;然后根据业务、技术、团队等综合情况进行排序&#xff0c;优先解决当前面临的最主要的复杂度问题。对于按照复杂度优先级解决的方式&#xff0c;存在一个普遍的担忧&#xff1a;如果按照优先级来解决复杂度&#xff0c;可…...

点淘的MCN机构申请详细入驻指南!

消费趋势的变化&#xff0c;来自消费人群的变化。 后疫情时代&#xff0c;经济复苏的反弹力度不足&#xff0c;人们开始怀疑我们正从前几年的消费升级&#xff0c;跌入消费降级的时代&#xff0c;但这并不能准确概括消费市场的变化。 仔细翻看各大奢侈品集团的财报&#xff0…...

事务和事务的隔离级别

1.4.事务和事务的隔离级别 1.4.1.为什么需要事务 事务是数据库管理系统&#xff08;DBMS&#xff09;执行过程中的一个逻辑单位&#xff08;不可再进行分割&#xff09;&#xff0c;由一个有限的数据库操作序列构成&#xff08;多个DML语句&#xff0c;select语句不包含事务&…...

每日一题 34在排序数组中查找元素的第一个和最后一个位置(二分查找)

题目 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target&#xff0c;返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...

Linux入门课的思维导图

耗时两周&#xff0c;终于把慕课网上的Linux的基础入门课实操、总结完了&#xff01; 第一次以Blog的形式做学习记录&#xff0c;过程很有意思&#xff0c;但也很耗时。 课程时长5h&#xff0c;涉及到很多专有名词&#xff0c;要去逐个查找&#xff0c;以前接触过的概念因为时…...

大模型的LoRa通讯详解与实现教程

一、LoRa通讯技术概述 LoRa(Long Range)是一种低功耗广域网(LPWAN)通信技术,由Semtech公司开发,特别适合于物联网设备的长距离、低功耗通信需求。LoRa技术基于扩频调制技术,能够在保持低功耗的同时实现数公里甚至数十公里的通信距离。 LoRa的主要特点 长距离通信:在城…...

暴雨新专利解决服务器噪音与性能悖论

6月1日&#xff0c;我国首部数据中心绿色化评价方面国家标准《绿色数据中心评价》正式实施&#xff0c;为我国数据中心的绿色低碳建设提供了明确指引。《评价》首次将噪音控制纳入国家级绿色评价体系&#xff0c;要求从设计隔声结构到运维定期监测实现闭环管控&#xff0c;加速…...