当前位置: 首页 > news >正文

OptaPlanner笔记1

1.1 什么是OptaPlanner

每个组织都面临规划问题:为产品或服务提供有限的受约束的资源(员工、资产、时间和金钱)。OptaPlanner用来优化这种规划,以实现用更少的资源来做更多的业务。 这被称为Constraint Satisfaction Programming(约束规划,这是运筹学学科的一部分)。

OptaPlanner 是一个轻量级、可嵌入的约束满足问题求解引擎,可优化规划问题。它适用的场景例如:

  • 员工轮班排班:为护士、修理工等排班。
  • 议程安排:安排会议,约会,维护工作,广告等。
  • 教育方面的排班:安排学科,课程,考试,学术会议等。
  • 车辆路线:利用已知的地图工具规划运输货物和/或乘客的车辆路线,这些路线可以经过多个目的地。
  • 装箱问题:如何使用装箱、卡车、船舶和存储仓库装载物品,或者是云计算中如何跨计算机资源打包信息。
  • 车间作业调度:汽车装配线规划、机器队列规划、劳动力任务规划等。
  • 切割库存:在切割纸张、钢材、地毯等时最大限度地减少浪费。
  • 体育日程安排:为足球联赛、棒球联赛规划比赛和训练时间表。
  • 财务优化:投资组合优化、风险分散等。

在这里插入图片描述

1.2 什么是规划问题

在这里插入图片描述

规划问题存在一个基于有限资源和特定规则的最优解。最优解可以是任何数量的事务,例如:

  • 利润最大化
  • 环境影响最小化
  • 员工和顾客满意度最大化

实现这些目标的能力取决于可用资源的数量,例如:

  • 人员数量
  • 时间
  • 预算
  • 实物资产(机械、车辆、计算机、建筑物等)

还必须考虑与这些资源相关的特定限制,例如一个人的工作小时数、他们使用某些机器的能力或设备之间的兼容性。

OptaPlanner可以帮助Java程序员有效地解决约束满足问题。它使用非常有效的得分计算,将优化启发式和元启发式算法结合在一起。

1.2.1 规划问题是NP-Complete还是NP-Hard问题

NP-Hard问题是指在多项式时间内无法解决的问题。这些问题通常是非常困难的,因为它们的解决需要大量的计算资源。NP-Hard问题的例子包括旅行推销员问题、分治问题等。
NP-Complete问题是指在多项式时间内可以解决,但在NP-Hard问题的解决过程中可以被解决的问题。这些问题的解决通常比NP-Hard问题的解决要快,但仍然需要大量的计算资源。NP-Complete问题的例子包括完全背包问题、分支界限问题等。

前面提到的所有场景都可能是NP-Complete或者NP-Hard的,也就是说:

  • 在合理的时间内验证问题的给定解决方案很容易。
  • 没有灵丹妙药可以在合理的时间内找到问题的最佳解决方案。(至少,世界上最聪明的计算机科学家还没有发现这样的灵丹妙药。 但是,如果他们找到一个适用于某个NP-Complete问题的解决方案,它将适用于每个NP-Complete问题。)

这意味着解决问题可能比你预期的要困难,因为常用的技术不足以解决问题:

  • 蛮力算法(即使是再聪明的变体)将会耗费大量的时间
  • 快速算法(例如在装箱问题中,先放入最大的物品)将得到远远偏离最优解的解决方案。

通过使用先进的优化算法,OptaPlanner 可以在合理的时间内为这类规划问题找到接近最优的解决方案。

1.2.2 规划问题存在约束(硬约束或软约束)

通常,规划问题存在至少两个级别的约束:

  • 绝对不可破坏的(负面)硬约束。(例如,一名教师不能同时教授两节不同的课程。)
  • 如果可以避免,就不应该破坏的(负面)软约束。(例如:某教师不喜欢在星期五的下午授课。)

某些问题也可能存在积极的约束:

  • 如果可能的话,应该满足的(正向的)软约束。(例如,某教师喜欢在星期一的上午授课。)

某些基础问题(例如N皇后问题)只存在硬约束。某些问题存在三个或更多级别的约束,例如硬、中等、软约束。
这些约束定义了规划问题的得分计算(也称为适应度函数)。规划问题的每个解决方案都可以用得分评级。在 OptaPlanner 中,得分约束用面向对象的语言(例如Java代码)编写。这样的代码易于编写、灵活且可扩展。

1.2.3 规划问题存在巨大的搜索空间

规划问题有许多解决方案。 这些解决方案可划分为以下几类:

  • 不考虑是否破坏任何约束的possible solution(可能方案)。规划问题往往存在大量这种毫无价值的解决方案。
  • 不破坏任何负面硬约束的feasible solution(可行方案)。可行方案往往与可能方案数量相对。有时候没有可行方案。每一个可行方案都是可能方案
  • 得分最高的optimal solution(最佳方案)。规划问题至少有一个最佳方案。即使没有可行方案,且最佳方案不可行的情况下也是如此。
  • 在给定时间内找到的最高分的best solution(最优方案)。最优方案可能是可行的,如果时间充裕的话,它就是最佳方案。

与直觉相反,即使数据集很小,可能方案的数量也是巨大的(如果计算正确的话)。正如你在例子中看到的,大多数案例比已知宇宙中原子的数量(10^80)有更多的可能方案。由于没有找到最优解决方案的灵丹妙药,因此任何实现都必须评估一部分的可能方案。

OptaPlanner支持多种优化算法,可以有效地处理大量可能方案。 根据用例的不同,某些优化算法的性能优于其他算法,但无法提前判断。使用 OptaPlanner,只需几行XML或代码来修改求解器的配置,即可轻松切换优化算法。

相关文章:

OptaPlanner笔记1

1.1 什么是OptaPlanner 每个组织都面临规划问题:为产品或服务提供有限的受约束的资源(员工、资产、时间和金钱)。OptaPlanner用来优化这种规划,以实现用更少的资源来做更多的业务。 这被称为Constraint Satisfaction Programming…...

github 镜像站及下载加速网址

1、提供常用的镜像网址(记住千万别登录账号): https://github.com.cnpmjs.org https://hub.fastgit.org https://hub.nuaa.cf/ https://hub.yzuu.cf/ https://hub.njuu.cf/上面的网址是一个克隆版的Github,上面的镜像网站内容跟G…...

大数据-玩转数据-Flink RedisSink

一、添加Redis Connector依赖 具体版本根据实际情况确定 <dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-redis_2.11</artifactId><version>1.1.5</version> </dependency>二、启动redis 参…...

c++病毒/恶搞代码大全( 上 )

注&#xff1a;以下代码应勿用于非法&#xff08;Dev-c5.11实测可用&#xff09; 1: 效果:无限生成cmd 解决方法&#xff1a;关闭程序即可 #include<bits/stdc.h> #include<windows.h> using namespace std; int main() {while(1)system("start cmd"…...

【数学建模】清风数模更新5 灰色关联分析

灰色关联分析综述 诸如经济系统、生态系统、社会系统等抽象系统都包含许多因素&#xff0c;系统整体的发展受各个因素共同影响。 为了更好地推动系统发展&#xff0c;我们需要清楚哪些因素是主要的&#xff0c;哪些是次要的&#xff0c;哪些是积极的&#xff0c;哪些是消极的…...

Windows下运行Tomcat服务时报GC Overhead Limit Exceeded

根本原因是在新建Tomcat作为Windows服务时&#xff0c;系统默认设置的堆内存太小了&#xff0c;我们打开/bin/service.bat文件&#xff0c;将如下图所示的默认值改大一些就好了 if "%JvmMs%" "" set JvmMs512 if "%JvmMx%" "" set J…...

OpenCV实例(八)车牌字符识别技术(一)模式识别

车牌字符识别技术&#xff08;一&#xff09;模式识别 1.模式识别流程2. 模式识别方式 影响并导致汽车牌照内字符出现缺损、污染、模糊等情况的常见因素有照相机的性能、采集车辆图像时光照的差异、汽车牌照的清洁度等。为了提高汽车牌照字符识别的准确率&#xff0c;本节将把英…...

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测 vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线 定义存放输出线的向量 此向量输出有<距离&#xff0c;角度> 因为检测的原理就是在变换霍夫空间里面去检测的&#xff0c;这里可…...

Error: EACCES: permission denied, rename ‘/usr/local/lib/node_modules/appium‘

在使用npm uninstall -g appium卸载appium的过程中报错 Error: EACCES: permission denied, rename /usr/local/lib/node_modules/appium -> /usr/local/lib/node_modules/.appium-cfBVovI6 npm ERR! code EACCES npm ERR! syscall rename npm ERR! path /usr/local/lib/n…...

CentOS 7中,配置了Oracle jdk,但是使用java -version验证时,出现的版本是OpenJDK,如何解决?

1.首先&#xff0c;检查已安装的jdk版本 sudo yum list installed | grep java2.移除、卸载圈红的系统自带的openjdk sudo yum remove java-1.7.0-openjdk.x86_64 sudo yum remove java-1.7.0-openjdk-headless.x86_64 sudo yum remove java-1.8.0-openjdk.x86_64 sudo yum r…...

牛客 松鼠回家(二分答案+最短路)

题目描述 松鼠宝宝由于贪玩去了一个具有n个点和m条边的无向图中&#xff0c;现在松鼠宝宝仅有h点体力&#xff0c;所有的边经过一次后会消耗部分体力&#xff0c;同时松鼠爸爸为了惩罚贪玩的松鼠宝宝&#xff0c;每到一个点会扣除部分松果&#xff08;起点的松果也会扣除&#…...

Mysql in 查询的奇怪方向

Mysql in 查询的奇怪方向 关于表字段存储的数据为 num1,num2,num3时, 还要通过多个num1,num2入参针对该字段进行查询 建表语句 CREATE TABLE test (test_ids varchar(100) DEFAULT NULL COMMENT 保存ids 以逗号分隔 ) ENGINEInnoDB;数据项 查询语句 SELECT test_ids FROM t…...

ORB-SLAM2第二节---双目地图初始化

比起单目初始化&#xff0c;而双目实现地图的初始化非常简单&#xff0c;只需要一帧&#xff08;左右目图像&#xff09;即可完成初始化。 行特征点统计。考虑用图像金字塔尺度作为偏移量&#xff0c;在当前点上下正负偏移量&#xff08;r)内的纵坐标值都认为是匹配点可能存在…...

后端常使用的中间件知识点--持续更新

类型难度mysqlmysql中SQL优化&#xff1a;多角度分析包学包会&#xff0c;sql优化全过程&#xff0c;刨根分析redis多角度剖析redis数据结构及底层实现原理、应用场景MQ简单大体说明RabbitMQ的使用&#xff08;简单版&#xff09;mybatis使用JDBC的批量插入百万数据要多少秒一遍…...

非科班的大家如何顺滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f;请来聊聊你的看法和观点&#xff0c;我本身是信息与计算科学专业&#xff0c;周围的同学有不少也是被这个名字“骗过来的”&#xff0c;看这个名字都以为是计算机相关专业&…...

webpack中常见的Loader

目录 1.webpack中的loader是什么&#xff1f;配置方式 2. loader特性3.常见的loader 1.webpack中的loader是什么&#xff1f; loader 用于对模块的"源代码"进行转换&#xff0c;在 import 或"加载"模块时预处理文件 webpack做的事情&#xff0c;仅仅是分…...

RabbitMQ:可靠消息传递的强大消息中间件

消息中间件在现代分布式系统中起着关键作用&#xff0c;它们提供了一种可靠且高效的方法来进行异步通信和解耦。在这篇博客中&#xff0c;我们将重点介绍 RabbitMQ&#xff0c;一个广泛使用的开源消息中间件。我们将深入探讨 RabbitMQ 的特性、工作原理以及如何在应用程序中使用…...

python 批量下载m3u8的视频

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;点击跳转 方法&#xff1a; 解析m3u8&#xff0c;获取其中的ts列表&#xff0c;多线程下载所有ts文件。 全部下完之后&#xff0c;用ffmpeg合…...

最后一击

第二届上海市青少年算法竞赛&#xff08;小学组&#xff09; 题目描述 Description 小爱和小艾两人组队打一只怪兽。一开始怪兽有 n 点生命值&#xff0c;当 n 变成 0 或更低时&#xff0c;怪兽就被消灭了。他们两人是同时开始攻击的&#xff0c;小爱每分钟可以攻击 a 下&…...

K8S资源管理方式

K8S资源管理方式 文章目录 K8S资源管理方式一、陈述式资源管理1.基础命令操作2.创建pod3.查看资源状态4.查看pod中的容器日志5.进入pod中的容器6.删除pod资源7.pod扩容8.项目生命周期管理&#xff08;创建-->发布-->更新-->回滚-->删除&#xff09;8.1创建services…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...