当前位置: 首页 > news >正文

【数学建模】清风数模更新5 灰色关联分析

灰色关联分析综述

诸如经济系统、生态系统、社会系统等抽象系统都包含许多因素,系统整体的发展受各个因素共同影响。

为了更好地推动系统发展,我们需要清楚哪些因素是主要的,哪些是次要的,哪些是积极的,哪些是消极的,这就要求我们进行系统分析。

数理统计中的系统分析方法包括回归分析、方差分析和主成分分析,它们都存在一些不足之处,当数据样本较少时,灰色关联分析方法可以较好地克服那些不足。

因此,当样本个数较大时,一般使用标准化回归;当样本个数较少时,才使用灰色关联分析。

灰色关联分析的基本思想,是根据序列曲线的几何形状的相似程度来判断其联系是否紧密,曲线越接近,相似序列之间的关联度就越大,反之就越小。

接下来我们用两个例题来介绍一下灰色关联分析的两种应用。

应用一:进行系统分析

 第一步:画统计图并分析

 由图可知:

  1. 四个变量均呈上升趋势;
  2. 第二产业的增幅较为明显;
  3. 第二产业和第三产业的差距在后三年相差更大。

第二步:确定分析数列

母序列(参考数列、母指标):能反映系统行为特征的数据序列。类似于因变量Y,这里记作X0

子序列(比较序列、子指标):影响系统行为的因素组成的数据序列。类似于自变量X,记作X1~Xn

在例题中,国内生产总值就是母序列,第一、第二和第三产业就是子序列。

第三步:对变量进行预处理

目的:去量纲,缩小变量范围以简化计算。

对母序列和子序列中的每个指标进行预处理先求出每个指标的均值,再用该指标的每个元素除以其均值

 第四步:计算子序列中各个指标与母序列的关联系数

 第五步:求出灰色关联度

 第六步:比较关联度,得出结论

对这个例题来说,该地区在2000年至2005年间的国内生产总值受到第三产业的影响最大(其灰色关联度最大)。

代码

clear;clc
load gdp.mat  % 导入数据 一个6*4的矩阵
Mean = mean(gdp);  % 求出每一列的均值以供后续的数据预处理
gdp = gdp ./ repmat(Mean,size(gdp,1),1);  %size(gdp,1)=6, repmat(Mean,6,1)可以将矩阵进行复制,复制为和gdp同等大小,然后使用点除(对应元素相除)
disp('预处理后的矩阵为:'); disp(gdp)
Y = gdp(:,1);  % 母序列
X = gdp(:,2:end); % 子序列
absX0_Xi = abs(X - repmat(Y,1,size(X,2)))  % 计算|X0-Xi|矩阵(在这里我们把X0定义为了Y)
a = min(min(absX0_Xi))    % 计算两级最小差a
b = max(max(absX0_Xi))  % 计算两级最大差b
rho = 0.5; % 分辨系数取0.5
gamma = (a+rho*b) ./ (absX0_Xi  + rho*b)  % 计算子序列中各个指标与母序列的关联系数
disp('子序列中各个指标的灰色关联度分别为:')
disp(mean(gamma))

应用二:综合评价问题

题目:评价下表中20条河流的水质情况。(用Topsis结合熵权法也可以解决)

 解题步骤

  1. 对指标正向化
  2. 对正向化后的矩阵进行预处理
  3. 将预处理后的矩阵每一行取出最大值构成母序列
  4. 计算各个指标与母序列的灰色关联度
  5. 计算各个指标灰色关联度的权重
  6. 计算各个评价对象的得分(用权重计算)
  7. 对得分进行归一化

相关文章:

【数学建模】清风数模更新5 灰色关联分析

灰色关联分析综述 诸如经济系统、生态系统、社会系统等抽象系统都包含许多因素,系统整体的发展受各个因素共同影响。 为了更好地推动系统发展,我们需要清楚哪些因素是主要的,哪些是次要的,哪些是积极的,哪些是消极的…...

Windows下运行Tomcat服务时报GC Overhead Limit Exceeded

根本原因是在新建Tomcat作为Windows服务时,系统默认设置的堆内存太小了,我们打开/bin/service.bat文件,将如下图所示的默认值改大一些就好了 if "%JvmMs%" "" set JvmMs512 if "%JvmMx%" "" set J…...

OpenCV实例(八)车牌字符识别技术(一)模式识别

车牌字符识别技术(一)模式识别 1.模式识别流程2. 模式识别方式 影响并导致汽车牌照内字符出现缺损、污染、模糊等情况的常见因素有照相机的性能、采集车辆图像时光照的差异、汽车牌照的清洁度等。为了提高汽车牌照字符识别的准确率,本节将把英…...

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测 vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线 定义存放输出线的向量 此向量输出有<距离&#xff0c;角度> 因为检测的原理就是在变换霍夫空间里面去检测的&#xff0c;这里可…...

Error: EACCES: permission denied, rename ‘/usr/local/lib/node_modules/appium‘

在使用npm uninstall -g appium卸载appium的过程中报错 Error: EACCES: permission denied, rename /usr/local/lib/node_modules/appium -> /usr/local/lib/node_modules/.appium-cfBVovI6 npm ERR! code EACCES npm ERR! syscall rename npm ERR! path /usr/local/lib/n…...

CentOS 7中,配置了Oracle jdk,但是使用java -version验证时,出现的版本是OpenJDK,如何解决?

1.首先&#xff0c;检查已安装的jdk版本 sudo yum list installed | grep java2.移除、卸载圈红的系统自带的openjdk sudo yum remove java-1.7.0-openjdk.x86_64 sudo yum remove java-1.7.0-openjdk-headless.x86_64 sudo yum remove java-1.8.0-openjdk.x86_64 sudo yum r…...

牛客 松鼠回家(二分答案+最短路)

题目描述 松鼠宝宝由于贪玩去了一个具有n个点和m条边的无向图中&#xff0c;现在松鼠宝宝仅有h点体力&#xff0c;所有的边经过一次后会消耗部分体力&#xff0c;同时松鼠爸爸为了惩罚贪玩的松鼠宝宝&#xff0c;每到一个点会扣除部分松果&#xff08;起点的松果也会扣除&#…...

Mysql in 查询的奇怪方向

Mysql in 查询的奇怪方向 关于表字段存储的数据为 num1,num2,num3时, 还要通过多个num1,num2入参针对该字段进行查询 建表语句 CREATE TABLE test (test_ids varchar(100) DEFAULT NULL COMMENT 保存ids 以逗号分隔 ) ENGINEInnoDB;数据项 查询语句 SELECT test_ids FROM t…...

ORB-SLAM2第二节---双目地图初始化

比起单目初始化&#xff0c;而双目实现地图的初始化非常简单&#xff0c;只需要一帧&#xff08;左右目图像&#xff09;即可完成初始化。 行特征点统计。考虑用图像金字塔尺度作为偏移量&#xff0c;在当前点上下正负偏移量&#xff08;r)内的纵坐标值都认为是匹配点可能存在…...

后端常使用的中间件知识点--持续更新

类型难度mysqlmysql中SQL优化&#xff1a;多角度分析包学包会&#xff0c;sql优化全过程&#xff0c;刨根分析redis多角度剖析redis数据结构及底层实现原理、应用场景MQ简单大体说明RabbitMQ的使用&#xff08;简单版&#xff09;mybatis使用JDBC的批量插入百万数据要多少秒一遍…...

非科班的大家如何顺滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f;请来聊聊你的看法和观点&#xff0c;我本身是信息与计算科学专业&#xff0c;周围的同学有不少也是被这个名字“骗过来的”&#xff0c;看这个名字都以为是计算机相关专业&…...

webpack中常见的Loader

目录 1.webpack中的loader是什么&#xff1f;配置方式 2. loader特性3.常见的loader 1.webpack中的loader是什么&#xff1f; loader 用于对模块的"源代码"进行转换&#xff0c;在 import 或"加载"模块时预处理文件 webpack做的事情&#xff0c;仅仅是分…...

RabbitMQ:可靠消息传递的强大消息中间件

消息中间件在现代分布式系统中起着关键作用&#xff0c;它们提供了一种可靠且高效的方法来进行异步通信和解耦。在这篇博客中&#xff0c;我们将重点介绍 RabbitMQ&#xff0c;一个广泛使用的开源消息中间件。我们将深入探讨 RabbitMQ 的特性、工作原理以及如何在应用程序中使用…...

python 批量下载m3u8的视频

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;点击跳转 方法&#xff1a; 解析m3u8&#xff0c;获取其中的ts列表&#xff0c;多线程下载所有ts文件。 全部下完之后&#xff0c;用ffmpeg合…...

最后一击

第二届上海市青少年算法竞赛&#xff08;小学组&#xff09; 题目描述 Description 小爱和小艾两人组队打一只怪兽。一开始怪兽有 n 点生命值&#xff0c;当 n 变成 0 或更低时&#xff0c;怪兽就被消灭了。他们两人是同时开始攻击的&#xff0c;小爱每分钟可以攻击 a 下&…...

K8S资源管理方式

K8S资源管理方式 文章目录 K8S资源管理方式一、陈述式资源管理1.基础命令操作2.创建pod3.查看资源状态4.查看pod中的容器日志5.进入pod中的容器6.删除pod资源7.pod扩容8.项目生命周期管理&#xff08;创建-->发布-->更新-->回滚-->删除&#xff09;8.1创建services…...

第三章 图论 No.9有向图的强连通与半连通分量

文章目录 定义Tarjan求SCC1174. 受欢迎的牛367. 学校网络1175. 最大半连通子图368. 银河 定义 连通分量是无向图的概念&#xff0c;yxc说错了&#xff0c;不要被误导 强连通分量&#xff1a;在一个有向图中&#xff0c;对于分量中的任意两点u&#xff0c;v&#xff0c;一定能从…...

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考…...

Mysql 和Oracle的区别

、mysql与oracle都是关系型数据库&#xff0c;Oracle是大型数据库&#xff0c;而MySQL是中小型数据库。但是MySQL是开源的&#xff0c;但是Oracle是收费的&#xff0c;而且比较贵。 1 2 mysql默认端口&#xff1a;3306&#xff0c;默认用户&#xff1a;root oracle默认端口&…...

在收藏夹里“积灰”的好东西——“收藏从未停止,行动从未开始”

方向一&#xff1a;分享一道你收藏的好题 小雅兰刚学数据结构与算法的时候&#xff0c;学的真的是很吃力&#xff0c;感觉链表真的特别的难&#xff0c;在学习了后面的知识之后&#xff0c;发现链表慢慢变得简单了&#xff0c;若是放在现在&#xff0c;小雅兰仍然觉得链表的知…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量&#xff1a;setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...