当前位置: 首页 > news >正文

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测

vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线

 定义存放输出线的向量 此向量输出有<距离,角度>

因为检测的原理就是在变换霍夫空间里面去检测的,这里可以理解为极坐标

第3个参数是距离精度 第四个参数是角度精度,第五个是阈值,只有点超过90个才算一条线

在图中画线操作:

Point ptz1, ptz2;for (size_t i = 0; i < lines1.size(); ++i) {float rth = lines1[i][0];//距离float theta = lines1[i][1];//角度double a = cos(theta);double b = sin(theta);double x0 = a * rth, y0 = b * rth;ptz1.x = cvRound(x0 + 1000 * (-b));ptz1.y = cvRound(y0 + 1000 * (a));ptz2.x = cvRound(x0 - 1000 * (-b));ptz2.y = cvRound(y0 - 1000 * (a));line(image1, ptz1, ptz2, Scalar(0, 255, 0), 2, 8);}

这里是画线操作 

概率霍夫线检测

vector<Vec4i>lines2;HoughLinesP(canny_mat, lines2, 1, CV_PI / 180.0, 25,25,32);//参数如何设置啊?  点数多少 最小长度 最大容忍间隔

后面三个参数依次是

// 大于阈值threshold的线段才可以被检测通过并返回到结果中。

// 表示最低线段的长度,比这个设定参数短的线段就不能被显现出来

// 允许将同一行点与点之间连接起来的最大的距离 

这里的画线操作就简单一点 直接画

	Point ptz3, ptz4;for (int j = 0; j < lines2.size(); j++) {ptz3.x = lines2[j][0];ptz3.y = lines2[j][1];ptz4.x = lines2[j][2];ptz4.y = lines2[j][3];line(image2, ptz3, ptz4, Scalar(0, 255, 255), 2, 8);}

 



轮廓的寻找

	Mat binary;threshold(gray, binary, 84, 255, THRESH_OTSU);imshow("binary", binary);waitKey(0);cvDestroyAllWindows();vector<vector<Point>> contours;findContours(binary, contours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);Mat image3clone = image3.clone();for (int i = 0; i < contours.size(); i++) {drawContours(image3clone, contours, i, Scalar(0, 255, 255), 2, 8);}

先是二值化图像,再用findcontours函数寻找轮廓,后面两个参数是寻找最外轮廓,内接轮廓就不管,用的是简单保存的方式。

画出轮廓用的是drawcontours来画轮廓,直接在图像上画出轮廓即可

画出轮廓外最小外接矩形

Point2f vtx[4];RotatedRect rbox = minAreaRect(contours[0]);rbox.points(vtx);for (int i = 0; i < 4; i++) {line(image3, vtx[i], vtx[i < 3 ? i + 1 : 0], CV_RGB(0, 255, 0), 2, CV_AA);}

定义4个点存储外接矩形定点,minAreaRect是外接矩形的rect,rbox.points是赋值给vtx,然后用一个简单的画线操作,依次画点和点的连线

改进版的图像旋转

前面的获得矩阵操作一样

	float angel = -10.0, scale = 1;Point2f center(lena.cols * 0.5, lena.rows * 0.5);Mat rot = getRotationMatrix2D(center, angel, scale);

获得外接矩形的作为最后的大小

Rect bbox = RotatedRect(center, lena.size(), angel).boundingRect();//获取外接矩形

然后得调整rot矩阵得参数,因为中心点有所偏移,需要平移操作

rot.at<double>(0, 2) += bbox.width / 2.0 - center.x;//调整仿射变换矩阵参数【a,b,l/n b,c,m】此步在调节l,m值
rot.at<double>(1, 2) += bbox.height / 2.0 - center.y;//				
Mat dst;
warpAffine(lena, dst, rot, bbox.size());

即可完成没有缺损得旋转图像!

相关文章:

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测 vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线 定义存放输出线的向量 此向量输出有<距离&#xff0c;角度> 因为检测的原理就是在变换霍夫空间里面去检测的&#xff0c;这里可…...

Error: EACCES: permission denied, rename ‘/usr/local/lib/node_modules/appium‘

在使用npm uninstall -g appium卸载appium的过程中报错 Error: EACCES: permission denied, rename /usr/local/lib/node_modules/appium -> /usr/local/lib/node_modules/.appium-cfBVovI6 npm ERR! code EACCES npm ERR! syscall rename npm ERR! path /usr/local/lib/n…...

CentOS 7中,配置了Oracle jdk,但是使用java -version验证时,出现的版本是OpenJDK,如何解决?

1.首先&#xff0c;检查已安装的jdk版本 sudo yum list installed | grep java2.移除、卸载圈红的系统自带的openjdk sudo yum remove java-1.7.0-openjdk.x86_64 sudo yum remove java-1.7.0-openjdk-headless.x86_64 sudo yum remove java-1.8.0-openjdk.x86_64 sudo yum r…...

牛客 松鼠回家(二分答案+最短路)

题目描述 松鼠宝宝由于贪玩去了一个具有n个点和m条边的无向图中&#xff0c;现在松鼠宝宝仅有h点体力&#xff0c;所有的边经过一次后会消耗部分体力&#xff0c;同时松鼠爸爸为了惩罚贪玩的松鼠宝宝&#xff0c;每到一个点会扣除部分松果&#xff08;起点的松果也会扣除&#…...

Mysql in 查询的奇怪方向

Mysql in 查询的奇怪方向 关于表字段存储的数据为 num1,num2,num3时, 还要通过多个num1,num2入参针对该字段进行查询 建表语句 CREATE TABLE test (test_ids varchar(100) DEFAULT NULL COMMENT 保存ids 以逗号分隔 ) ENGINEInnoDB;数据项 查询语句 SELECT test_ids FROM t…...

ORB-SLAM2第二节---双目地图初始化

比起单目初始化&#xff0c;而双目实现地图的初始化非常简单&#xff0c;只需要一帧&#xff08;左右目图像&#xff09;即可完成初始化。 行特征点统计。考虑用图像金字塔尺度作为偏移量&#xff0c;在当前点上下正负偏移量&#xff08;r)内的纵坐标值都认为是匹配点可能存在…...

后端常使用的中间件知识点--持续更新

类型难度mysqlmysql中SQL优化&#xff1a;多角度分析包学包会&#xff0c;sql优化全过程&#xff0c;刨根分析redis多角度剖析redis数据结构及底层实现原理、应用场景MQ简单大体说明RabbitMQ的使用&#xff08;简单版&#xff09;mybatis使用JDBC的批量插入百万数据要多少秒一遍…...

非科班的大家如何顺滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f;请来聊聊你的看法和观点&#xff0c;我本身是信息与计算科学专业&#xff0c;周围的同学有不少也是被这个名字“骗过来的”&#xff0c;看这个名字都以为是计算机相关专业&…...

webpack中常见的Loader

目录 1.webpack中的loader是什么&#xff1f;配置方式 2. loader特性3.常见的loader 1.webpack中的loader是什么&#xff1f; loader 用于对模块的"源代码"进行转换&#xff0c;在 import 或"加载"模块时预处理文件 webpack做的事情&#xff0c;仅仅是分…...

RabbitMQ:可靠消息传递的强大消息中间件

消息中间件在现代分布式系统中起着关键作用&#xff0c;它们提供了一种可靠且高效的方法来进行异步通信和解耦。在这篇博客中&#xff0c;我们将重点介绍 RabbitMQ&#xff0c;一个广泛使用的开源消息中间件。我们将深入探讨 RabbitMQ 的特性、工作原理以及如何在应用程序中使用…...

python 批量下载m3u8的视频

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;点击跳转 方法&#xff1a; 解析m3u8&#xff0c;获取其中的ts列表&#xff0c;多线程下载所有ts文件。 全部下完之后&#xff0c;用ffmpeg合…...

最后一击

第二届上海市青少年算法竞赛&#xff08;小学组&#xff09; 题目描述 Description 小爱和小艾两人组队打一只怪兽。一开始怪兽有 n 点生命值&#xff0c;当 n 变成 0 或更低时&#xff0c;怪兽就被消灭了。他们两人是同时开始攻击的&#xff0c;小爱每分钟可以攻击 a 下&…...

K8S资源管理方式

K8S资源管理方式 文章目录 K8S资源管理方式一、陈述式资源管理1.基础命令操作2.创建pod3.查看资源状态4.查看pod中的容器日志5.进入pod中的容器6.删除pod资源7.pod扩容8.项目生命周期管理&#xff08;创建-->发布-->更新-->回滚-->删除&#xff09;8.1创建services…...

第三章 图论 No.9有向图的强连通与半连通分量

文章目录 定义Tarjan求SCC1174. 受欢迎的牛367. 学校网络1175. 最大半连通子图368. 银河 定义 连通分量是无向图的概念&#xff0c;yxc说错了&#xff0c;不要被误导 强连通分量&#xff1a;在一个有向图中&#xff0c;对于分量中的任意两点u&#xff0c;v&#xff0c;一定能从…...

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考…...

Mysql 和Oracle的区别

、mysql与oracle都是关系型数据库&#xff0c;Oracle是大型数据库&#xff0c;而MySQL是中小型数据库。但是MySQL是开源的&#xff0c;但是Oracle是收费的&#xff0c;而且比较贵。 1 2 mysql默认端口&#xff1a;3306&#xff0c;默认用户&#xff1a;root oracle默认端口&…...

在收藏夹里“积灰”的好东西——“收藏从未停止,行动从未开始”

方向一&#xff1a;分享一道你收藏的好题 小雅兰刚学数据结构与算法的时候&#xff0c;学的真的是很吃力&#xff0c;感觉链表真的特别的难&#xff0c;在学习了后面的知识之后&#xff0c;发现链表慢慢变得简单了&#xff0c;若是放在现在&#xff0c;小雅兰仍然觉得链表的知…...

【算法|数组】双指针

算法|数组——双指针 引入 给你一个按 非递减顺序 排序的整数数组 nums&#xff0c;返回 每个数字的平方 组成的新数组&#xff0c;要求也按 非递减顺序 排序。 示例 1&#xff1a; 输入&#xff1a;nums [-4,-1,0,3,10] 输出&#xff1a;[0,1,9,16,100] 解释&#xff1a;…...

asp.net core6 webapi 使用反射批量注入接口层和实现接口层的接口的类到ioc中

IBLL接口层类库 namespace IBLL {public interface ICar{string CarName();} } namespace IBLL {public interface IRed{string RedName();} }BLL实现接口层类库 namespace BLL {public class Car : ICar{public string CarName(){return "BBA";}} } namespace BLL…...

【2023】字节跳动 10 日心动计划——第九关

目录 1. 螺旋矩阵2. 划分字母区间3. 子集 II 1. 螺旋矩阵 &#x1f517; 原题链接&#xff1a;54. 螺旋矩阵 类似于BFS那样使用方向数组即可。 class Solution { public:vector<int> spiralOrder(vector<vector<int>>& matrix) {int m matrix.size(), …...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...