当前位置: 首页 > news >正文

OpenCV实例(八)车牌字符识别技术(一)模式识别

车牌字符识别技术(一)模式识别

  • 1.模式识别流程
  • 2. 模式识别方式

影响并导致汽车牌照内字符出现缺损、污染、模糊等情况的常见因素有照相机的性能、采集车辆图像时光照的差异、汽车牌照的清洁度等。为了提高汽车牌照字符识别的准确率,本节将把英文、数字和汉字分开识别。对于英文和数字的识别,采用基于边缘的霍斯多夫距离来进行。对于汉字的识别,首先对汽车牌照的原始图像进行归一化、灰度均衡化等相关预处理,继而通过使用小波变换的方法提取汉字字符,之后降维处理汽车牌照中汉字字符的原始特征,最后在最小距离分类器中读入得到的汽车牌照中汉字字符的最终特征,并利用特征模板进行匹配。

模式识别概述
人在观察事物或现象时,常寻找它与其他事物或现象不同之处,并根据一定目的把相似、但又细节不同的事物或现象组成一类——如字符识别,虽然每个人写的数字“8”都不一样,但都是同一类。

模式识别是AI的一个重要方向,目的在于模拟人的感知能力,也称“机器感知”、“智能感知”。其发展于20世纪40年代电子计算机的出现,21世纪与深度学习融合,近年深度学习和大数据极大推动了其发展!包括声音和语言识别、文字识别、指纹识别、声纳和地震信号分析、图片分析、化学模式识别等等。

模式识别的相关原理一般是作为识别研究的基础性理论。模式识别的研究体系有许多分支,其中近几年来得到人们较多关注的分支是字符识别。因此,在研究字符识别相关技术的过程中,模式识别的作用极为重要并且极具指导性,而基础理论(模式识别领域)的发展对字符识别的研究又起到了促进作用。
在这里插入图片描述

1.模式识别流程

随着计算机技术研究和应用的发展和不断深化,模式识别逐步发展起来。模式就是一种对某种对象(一些敏感的客体)结构或者定量的描述,是一种集合(由具有某些共同特定性质的模式构成)。狭义讲,模式识别就是研究通过计算机自动地(或者人为进行少量干预)将待识别的模式分配到各个模式类中的技术。而根据广义的模式识别的定义,模式构成主要标本,该标本主要是供模仿使用,而模式识别即为对客体所属的标本的鉴定。

模式识别的流程可以分为待识模式、数字化、预处理、特征、模式分类几个步骤。

全局的工作会受到其中每一阶段的影响,而这些影响一般都是非常重要的。

在这里插入图片描述

2. 模式识别方式

模式识别主要包括两方面的研究方法:一是生理学家、心理学家、生物学家和神经生理学家的研究内容,即生物是如何感知的;二是在给定任务的条件下进行的,己经在信息学专家、数学专家和计算机专家的共同努力下取得了巨大的成功,主要内容为如何用计算机完成模式识别的方法与理论。目前模式识别主要有4种方法:基于神经网络的识别方法、基于句法模式的识别方法、基于统计模式的识别方法和基于模糊模式的识别方法。

(1)基于神经网络的识别方法

大量的神经元按照一定规则进行组合和连接后便构成了神经网络,动态性以及非线性是神经网络系统的两个主要特征。由神经网络组成的系统所产生的作用不容小觑,主要是因为其具备的功能非常强大,不但能够进行决策以及识别,而且在联想、自学习、自组织和容错方面表现不错。

(2)基于句法模式的识别方法

很多简单的子模式的组合被描述成为一个模式,这是句法模式识别方法的核心思想,而子模式的组合又可以从这些简单的子模式分割而得,以此类推,直至获取基元为止。在模式识别的相关理论中,这里的基元就是通常所说的最底层的模式。句法模式识别法中最为关键的步骤是对于基元的选取,选出的基元不但要提供一个紧密的描述(准确反映模式结构的关系),而且要便于抽取出非句法语法。因此,模式描述语句即为选取出用来描述模式的基元之间的组合关系以及基元本身。

(3)基于统计模式的识别方法

统计模式识别法是选择足够的来自于被研究的模式中的特征来代表它。基于空间距离,对于同类模式以及异类模式,采取如下假定:距离较近的为同类模式,距离较远的为异类模式。对于特征空间的分割,如果采用某种方法进行,那么通过使用该方法后认定特征空间的同一个区域为同类模式,通过检测它的特征向量位于哪一个区域而判定待分类的模式属于哪一类模式。

(4)基于模糊模式的识别方法

模糊模式识别法主要用于模式识别问题的处理。模糊模式识别法能否取得良好的结果的关键是隶属度函数。目前,模糊模式识别法主要分为直接法和间接法:直接法进行识别的主要根据是最大隶属原则,间接法进行归类的主要根据为择近原则。

相关文章:

OpenCV实例(八)车牌字符识别技术(一)模式识别

车牌字符识别技术(一)模式识别 1.模式识别流程2. 模式识别方式 影响并导致汽车牌照内字符出现缺损、污染、模糊等情况的常见因素有照相机的性能、采集车辆图像时光照的差异、汽车牌照的清洁度等。为了提高汽车牌照字符识别的准确率,本节将把英…...

OPENCV C++(七)霍夫线检测+找出轮廓和外接矩形+改进旋转

霍夫线检测 vector<Vec2f> lines1;HoughLines(canny_mat, lines1, 1, CV_PI / 180.0,90 );//45可以检测里面两条线 80检测出外边两条线 定义存放输出线的向量 此向量输出有<距离&#xff0c;角度> 因为检测的原理就是在变换霍夫空间里面去检测的&#xff0c;这里可…...

Error: EACCES: permission denied, rename ‘/usr/local/lib/node_modules/appium‘

在使用npm uninstall -g appium卸载appium的过程中报错 Error: EACCES: permission denied, rename /usr/local/lib/node_modules/appium -> /usr/local/lib/node_modules/.appium-cfBVovI6 npm ERR! code EACCES npm ERR! syscall rename npm ERR! path /usr/local/lib/n…...

CentOS 7中,配置了Oracle jdk,但是使用java -version验证时,出现的版本是OpenJDK,如何解决?

1.首先&#xff0c;检查已安装的jdk版本 sudo yum list installed | grep java2.移除、卸载圈红的系统自带的openjdk sudo yum remove java-1.7.0-openjdk.x86_64 sudo yum remove java-1.7.0-openjdk-headless.x86_64 sudo yum remove java-1.8.0-openjdk.x86_64 sudo yum r…...

牛客 松鼠回家(二分答案+最短路)

题目描述 松鼠宝宝由于贪玩去了一个具有n个点和m条边的无向图中&#xff0c;现在松鼠宝宝仅有h点体力&#xff0c;所有的边经过一次后会消耗部分体力&#xff0c;同时松鼠爸爸为了惩罚贪玩的松鼠宝宝&#xff0c;每到一个点会扣除部分松果&#xff08;起点的松果也会扣除&#…...

Mysql in 查询的奇怪方向

Mysql in 查询的奇怪方向 关于表字段存储的数据为 num1,num2,num3时, 还要通过多个num1,num2入参针对该字段进行查询 建表语句 CREATE TABLE test (test_ids varchar(100) DEFAULT NULL COMMENT 保存ids 以逗号分隔 ) ENGINEInnoDB;数据项 查询语句 SELECT test_ids FROM t…...

ORB-SLAM2第二节---双目地图初始化

比起单目初始化&#xff0c;而双目实现地图的初始化非常简单&#xff0c;只需要一帧&#xff08;左右目图像&#xff09;即可完成初始化。 行特征点统计。考虑用图像金字塔尺度作为偏移量&#xff0c;在当前点上下正负偏移量&#xff08;r)内的纵坐标值都认为是匹配点可能存在…...

后端常使用的中间件知识点--持续更新

类型难度mysqlmysql中SQL优化&#xff1a;多角度分析包学包会&#xff0c;sql优化全过程&#xff0c;刨根分析redis多角度剖析redis数据结构及底层实现原理、应用场景MQ简单大体说明RabbitMQ的使用&#xff08;简单版&#xff09;mybatis使用JDBC的批量插入百万数据要多少秒一遍…...

非科班的大家如何顺滑转码

近年来&#xff0c;很多人想要从其他行业跳槽转入计算机领域。非计算机科班如何丝滑转码&#xff1f;请来聊聊你的看法和观点&#xff0c;我本身是信息与计算科学专业&#xff0c;周围的同学有不少也是被这个名字“骗过来的”&#xff0c;看这个名字都以为是计算机相关专业&…...

webpack中常见的Loader

目录 1.webpack中的loader是什么&#xff1f;配置方式 2. loader特性3.常见的loader 1.webpack中的loader是什么&#xff1f; loader 用于对模块的"源代码"进行转换&#xff0c;在 import 或"加载"模块时预处理文件 webpack做的事情&#xff0c;仅仅是分…...

RabbitMQ:可靠消息传递的强大消息中间件

消息中间件在现代分布式系统中起着关键作用&#xff0c;它们提供了一种可靠且高效的方法来进行异步通信和解耦。在这篇博客中&#xff0c;我们将重点介绍 RabbitMQ&#xff0c;一个广泛使用的开源消息中间件。我们将深入探讨 RabbitMQ 的特性、工作原理以及如何在应用程序中使用…...

python 批量下载m3u8的视频

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;点击跳转 方法&#xff1a; 解析m3u8&#xff0c;获取其中的ts列表&#xff0c;多线程下载所有ts文件。 全部下完之后&#xff0c;用ffmpeg合…...

最后一击

第二届上海市青少年算法竞赛&#xff08;小学组&#xff09; 题目描述 Description 小爱和小艾两人组队打一只怪兽。一开始怪兽有 n 点生命值&#xff0c;当 n 变成 0 或更低时&#xff0c;怪兽就被消灭了。他们两人是同时开始攻击的&#xff0c;小爱每分钟可以攻击 a 下&…...

K8S资源管理方式

K8S资源管理方式 文章目录 K8S资源管理方式一、陈述式资源管理1.基础命令操作2.创建pod3.查看资源状态4.查看pod中的容器日志5.进入pod中的容器6.删除pod资源7.pod扩容8.项目生命周期管理&#xff08;创建-->发布-->更新-->回滚-->删除&#xff09;8.1创建services…...

第三章 图论 No.9有向图的强连通与半连通分量

文章目录 定义Tarjan求SCC1174. 受欢迎的牛367. 学校网络1175. 最大半连通子图368. 银河 定义 连通分量是无向图的概念&#xff0c;yxc说错了&#xff0c;不要被误导 强连通分量&#xff1a;在一个有向图中&#xff0c;对于分量中的任意两点u&#xff0c;v&#xff0c;一定能从…...

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于PSO-LSSVM-Adaboost粒子群算法优化最小二乘支持向量机结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考…...

Mysql 和Oracle的区别

、mysql与oracle都是关系型数据库&#xff0c;Oracle是大型数据库&#xff0c;而MySQL是中小型数据库。但是MySQL是开源的&#xff0c;但是Oracle是收费的&#xff0c;而且比较贵。 1 2 mysql默认端口&#xff1a;3306&#xff0c;默认用户&#xff1a;root oracle默认端口&…...

在收藏夹里“积灰”的好东西——“收藏从未停止,行动从未开始”

方向一&#xff1a;分享一道你收藏的好题 小雅兰刚学数据结构与算法的时候&#xff0c;学的真的是很吃力&#xff0c;感觉链表真的特别的难&#xff0c;在学习了后面的知识之后&#xff0c;发现链表慢慢变得简单了&#xff0c;若是放在现在&#xff0c;小雅兰仍然觉得链表的知…...

【算法|数组】双指针

算法|数组——双指针 引入 给你一个按 非递减顺序 排序的整数数组 nums&#xff0c;返回 每个数字的平方 组成的新数组&#xff0c;要求也按 非递减顺序 排序。 示例 1&#xff1a; 输入&#xff1a;nums [-4,-1,0,3,10] 输出&#xff1a;[0,1,9,16,100] 解释&#xff1a;…...

asp.net core6 webapi 使用反射批量注入接口层和实现接口层的接口的类到ioc中

IBLL接口层类库 namespace IBLL {public interface ICar{string CarName();} } namespace IBLL {public interface IRed{string RedName();} }BLL实现接口层类库 namespace BLL {public class Car : ICar{public string CarName(){return "BBA";}} } namespace BLL…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态

前言 在人工智能技术飞速发展的今天&#xff0c;深度学习与大模型技术已成为推动行业变革的核心驱动力&#xff0c;而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心&#xff0c;系统性地呈现了两部深度技术著作的精华&#xff1a;…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...