当前位置: 首页 > news >正文

【实战讲解】数据血缘落地实施

在复杂的社会分工协作体系中,我们需要明确个人定位,才能更好的发挥价值,数据也是一样,于是,数据血缘应运而生。

今天这篇文章会全方位的讲解数据血缘,并且给出具体的落地实施方案。

一、数据血缘是什么

数据血缘是在数据的加工、流转过程产生的数据与数据之间的关系。

提供一种探查数据关系的手段,用于跟踪数据流经路径。

二、数据血缘的组成

1、数据节点

数据血缘中的节点,可以理解为数据流转中的一个个实体,用于承载数据功能业务。例如数据库、数据表、数据字段都是数据节点;从广义上来说,与数据业务相关的实体都可以作为节点纳入血缘图中,例如指标、报表、业务系统等。

按照血缘关系划分节点,主要有以下三类:流出节点->中间节点->流入节点

流出节点: 数据提供方,血缘关系的源端节点。

中间节点: 血缘关系中类型最多的节点,既承接流入数据,又对外流出数据。

流入节点: 血缘关系的终端节点,一般为应用层,例如可视化报表、仪表板或业务系统。

2、节点属性

当前节点的属性信息,例如表名,字段名,注释,说明等。

3、流转路径

数据流转路径通过表现数据流动方向、数据更新量级、数据更新频率三个维度的信息,标明了数据的流入流出信息:

数据流动方向: 通过箭头的方式表明数据流动方向

数据更新量级: 数据更新的量级越大,血缘线条越粗,说明数据的重要性越高。

数据更新频率: 数据更新的频率越高,血缘线条越短,变化越频繁,重要性越高。

4、流转规则-属性

流转规则体现了数据流转过程中发生的变化,属性则记录了当前路径对数据的操作内容,用户可通过流转路径查看该路径规则与属性,规则可以是直接映射关系,也可以是复杂的规则,例如:

数据映射: 不对数据做任何变动,直接抽取。

数据清洗: 表现数据流转过程中的筛选标准。例如要求数据不能为空值、符合特定格式等。

数据转换: 数据流转过程中,流出实体的数据需要进行特殊处理才能接入到数据需求方。

数据调度: 体现当前数据的调度依赖关系。

数据应用: 为报表与应用提供数据。

三、我们为什么需要数据血缘

1、日益庞大的数据开发导致表间关系混乱,管理成本与使用成本激增

数据血缘产生最本质的需求。大数据开发作为数据汇集与数据服务提供方,庞大的数据与混乱的数据依赖导致管理成本与使用成本飙升。

2、数据价值评估,数据质量难以推进

表的优先级划分,计算资源的倾斜,表级数据质量监控,如何制定一个明确且科学的标准。

3、什么表该删,什么表不能删,下架无依据

业务库,数仓库,中间库,开发库,测试库等众多库表,是否存在数据冗余(一定存在)。以及存储资源如何释放?

4、动了一张表,错了一堆表

你改了一张表的字段,第二天醒来发现邮件里一堆任务异常告警。

5ETL任务异常时的归因分析、影响分析、恢复

承接上个问题,如果存在任务异常或者ETL故障,我们如何定位异常原因,并且进行影响分析,以及下游受影响节点的快速恢复。

6、调度依赖混乱

数据依赖混乱必然会带来调度任务的依赖混乱,如何构建一个健壮的调度依赖。

7、数据安全审计难以开展

针对银行、保险、政府等对安全关注度较高的行业,数据安全-数据泄露-数据合规性需要重点关注。

由于数据存在ETL链路操作,下游表的数据来源于上游表,所以需要基于数据全链路来进行安全审计,否则可能会出现下游数据安全等级较低,导致上游部分核心数据泄露。

四、数据血缘可以做什么

1、流程定位,追踪溯源

通过可视化方式,将目标表的上下游依赖进行展示,一目了然。

2、确定影响范围

通过当前节点的下游节点数量以及类型可以确定其影响范围,可避免出现上游表的修改导致下游表的报错。

3、评估数据价值、推动数据质量

通过对所有表节点的下游节点进行汇总,排序,作为数据评估依据,可重点关注输出数量较多的数据节点,并添加数据质量监控。

4、提供数据下架依据

例如以下数据节点,无任何下游输出节点,且并无任何存档需求,则可以考虑将其下架删除。

5、归因分析,快速恢复

当某个任务出现问题时,通过查看血缘上游的节点,排查出造成问题的根因是什么。同时根据当前任务节点的下游节点进行任务的快速恢复。

6、梳理调度依赖

可以将血缘节点与调度节点绑定,通过血缘依赖进行ETL调度。

7、数据安全审计

数据本身具有权限与安全等级,下游数据的安全等级不应该低于上游的安全等级,否则会有权限泄露风险。

可以基于血缘,通过扫描高安全等级节点的下游,查看下游节点是否与上游节点权限保持一致,来排除权限泄露、数据泄露等安全合规风险。

五、数据血缘落地方案

目前业内常见的落地数据血缘系统以及应用,主要有以下三种方式:

1、采用开源系统:

AtlasMetacatDatahub

采用开源系统最大的优点是投入成本较低,但是缺点主要包括 

1、适配性较差,开源方案无法完全匹配公司现有痛点。

2、二开成本高,需要根据开源版本进行定制化开发。

2、厂商收费平台:

亿信华辰,网易数帆等

此类数据平台中会内置数据血缘管理系统,功能较为全面,使用方便。但是同样也有以下缺点:

1、贵

2、需要ALL IN平台,为保障数据血缘的使用,数据业务需要全部迁移到厂商平台中。

3、自建

通过图数据库、后端、前端自建数据血缘管理系统,此方案开发投入较大,但是有以下优点

1、因地制宜,可根据核心痛点定制化开发元数据及数据血缘系统。

2、技术积累,对于开发人员来说,从0-1开发数据血缘系统,可以更深刻的理解数据业务。

3、平台解耦,独立于数据平台之外,数据血缘的开发不会对正常业务造成影响。

接下来我们讲讲如何自建数据血缘系统

六、如何构建数据血缘系统

1、明确需求,确定边界

在进行血缘系统构建之前,需要进行需求调研,明确血缘系统的主要功能,从而确定血缘系统的最细节点粒度,实体边界范围。

例如节点粒度是否需要精确到字段级,或是表级。一般来说,表级粒度血缘可以解决75%左右的痛点需求, 字段级血缘复杂度较表级血缘高出许多,如果部门人数较少,可以考虑只精确到表级粒度血缘。

常见的实体节点包括:任务节点、库节点、表节点、字段节点、指标节点、报表节点、部门节点等。血缘系统可以扩展数据相关的实体节点,可以从不同的场景查看数据走向,例如表与指标,指标与报表的血缘关系。但是实体节点的范围需要明确,不可无限制的扩展下去。

明确需求,确定节点粒度与范围之后,才可根据痛点问题给出准确的解决方案,不至于血缘系统越建越臃肿,提高ROI(投入产出比)

2、构建元数据管理系统

目前市面上所有的血缘系统都需要依赖于元数据管理系统而存在。

元数据作为血缘的基础,一是用于构建节点间的关联关系,二是用于填充节点的属性,三是血缘系统的应用需要基于元数据才能发挥出最大的价值。所以构建血缘系统的前提一定是有一个较全面的元数据。

3、技术选型:图数据库

目前业内通常采用图数据库进行血缘关系的存储。

对于血缘关系这种层级较深,嵌套次数较多的应用场景,关系型数据库必须进行表连接的操作,表连接次数随着查询的深度增大而增多,会极大影响查询的响应速度。

而在图数据库中,应用程序不必使用外键约束实现表间的相互引用,而是利用关系作为连接跳板进行查询,在查询关系时性能极佳,而且利用图的方式来表达血缘关系更为直接。

下图为图数据库与关系型数据库在查询人脉时的逻辑对比:

4、血缘关系录入:自动解析and手动登记

自动解析:

获取到元数据之后,首先可以根据元数据表中的SQL抽取语句,通过SQL解析器可自动化获取到当前表的来源表【SQL解析器推荐jsqlparse】,并进行血缘关系录入。

手动登记:

如果当前表无SQL抽取语句,数据来源为手动导入、代码写入、SparkRDD方式等无法通过自动化方式确定来源表的时候,我们需要对来源表进行手动登记,然后进行血缘关系的录入。

5、血缘可视化

血缘系统构建完成后,为了能够更好的体现血缘价值,量化产出,需要进行血缘可视化的开发,分为两步:

1)链路-属性展示:

根据具体节点,通过点击操作,逐级展示血缘节点间的链路走向与涉及到的节点属性信息。

2)节点操作:

基于可视化的血缘节点与当前节点附带的元数据属性,我们可以设想一些自动化操作例如:

节点调度:直接基于血缘开启当前表节点的调度任务 

属性修改:通过前端修改当前节点的元数据属性并保存

6、血缘统计分析

数据血缘构建完成后,我们可以做一些统计分析的操作,从不同层面查看数据的分布与使用情况,从而支撑业务更好更快更清晰。

以我们团队举例,在工作过程中,我们需要以下血缘统计用于支撑数据业务,例如:

数据节点下游节点数量排序,用于评估数据价值及其影响范围

查询当前节点的所有上游节点,用于业务追踪溯源

数据节点输出报表信息详情统计,用于报表的上架与更新

查询孤岛节点,即无上下游节点的节点,用于数据删除的依据

7、血缘驱动业务开展

数据血缘构建完成,统计分析结果也有了,业务痛点也明确了,接下来我们即可利用数据血缘驱动业务更好更快开展。

我们团队目前落地的血缘相关业务有以下几点:

1)影响范围告警:

将血缘关系与调度任务打通,监测当前血缘节点的调度任务,如果当前节点调度出现异常,则对当前节点的所有下游节点进行告警。

2)异常原因探查:

还是将血缘关系与调度任务打通,监测当前血缘节点的调度任务,如果当前节点调度出现异常,则会给出当前节点的直接上游节点,用于探查异常原因。

3)异常链路一键恢复:

基于上一应用,异常原因定位并且修复完成之后,可以通过血缘系统,一键恢复当前数据节点的所有下游节点调度任务,真正实现一键操作。

4)支撑数据下架:

目前团队已经根据探查孤岛节点即无上下游节点的节点,累计归档数据表628张,节省了13%的存储空间。

5)数据质量监控:

对当前血缘中所有节点输出的下游节点数量进行排序,可以精确的判断某张表的影响范围大小,从而可以根据此对高排序表进行数据质量的监控。

6)数据标准化监控:

如果当前公司制定了基于库、表、字段的命名规范,我们可以通过探查血缘中的所有数据节点,并命名规范进行匹配,得到不符合规范的库、表、字段进行整改。

当然了,此业务仅基于元数据也可实现,放在此处属于博主强行升华了。

7)数据安全审计:

团队基于用户职级、部门、操作行为等权重对目前的库表进行了数据权限等级划分,权限等级越高,当前表的安全级别越高。

团队基于血缘进行数据全链路的安全等级监测,如果发现下游节点安全等级低于上游节点,则会进行告警并提示整改。确保因为安全等级混乱导致数据泄露。

八、血缘系统评价标准

在推动数据血缘落地过程中,经常会有用户询问:血缘质量如何?覆盖场景是否全面?能否解决他们的痛点?做出来好用吗?

于是我也在思考,市面上血缘系统方案那么多,我们自建系统的核心优势在哪里,血缘系统的优劣从哪些层次进行评价,于是我们团队量化出了以下三个技术指标:

1、准确率

定义: 假设一个任务实际的输入和产出与血缘中该任务的上游和下游相符,既不缺失也不多余,则认为这个任务的血缘是准确的,血缘准确的任务占全量任务的比例即为血缘准确率。

准确率是数据血缘中最核心的指标,例如影响范围告警,血缘的缺失有可能会造成重要任务没有被通知,造成线上事故。

我们在实践中通过两种途径,尽早发现有问题的血缘节点:

人工校验: 通过构造测试用例来验证其他系统一样,血缘的准确性问题也可以通过构造用例来验证。实际操作时,我们会从线上运行的任务中采样出一部分,人工校验解析结果是否正确。

用户反馈: 全量血缘集合的准确性验证是个漫长的过程,但是具体到某个用户的某个业务场景,问题就简化多了。实际操作中,我们会与一些业务方深入的合作,一起校验血缘准确性,并修复问题。

2、覆盖率

定义: 当有数据资产录入血缘系统时,则代表数据血缘覆盖了当前数据资产。被血缘覆盖到的数据资产占所有数据资产的比例即为血缘覆盖率。

血缘覆盖率是比较粗粒度的指标。作为准确率的补充,用户通过覆盖率可以知道当前已经支持的数据资产类型和任务类型,以及每种覆盖的范围。

在内部,我们定义覆盖率指标的目的有两个,一是我方比较关注的数据资产集合,二是寻找当前业务流程中尚未覆盖的数据资产集合,以便于后续血缘优化。

当血缘覆盖率低时,血缘系统的应用范围一定是不全面的,通过关注血缘覆盖率,我们可以知晓血缘的落地进度,推进数据血缘的有序落地。

3、时效性

定义: 从数据资产新增和任务发生修改的时间节点,到最终新增或变更的血缘关系录入到血缘系统的端到端延时。

对于一些用户场景来说,血缘的时效性并没有特别重要,属于加分项,但是有一些场景是强依赖。不同任务类型的时效性会有差异。

例如:故障影响范围告警以及恢复,是对血缘实时性要求很高的场景之一。如果血缘系统只能定时更新T-1的状态,可能会导致严重业务事故。

提升时效性的瓶颈,需要业务系统可以近实时的将任务相关的修改,以通知形式发送出来,并由血缘系统进行更新。

相关文章:

【实战讲解】数据血缘落地实施

‍在复杂的社会分工协作体系中,我们需要明确个人定位,才能更好的发挥价值,数据也是一样,于是,数据血缘应运而生。 今天这篇文章会全方位的讲解数据血缘,并且给出具体的落地实施方案。 一、数据血缘是什么…...

Java课题笔记~ ServletContext

单个Servlet的配置对象 web.xml <servlet><servlet-name>FirstServlet</servlet-name><servlet-class>com.ambow.test.FirstServlet</servlet-class><init-param><param-name>charset</param-name><param-value>utf-8&…...

设备取电芯片LDR6328Q

2021年5月&#xff0c;USB-IF 协会发布了全新的USB PD3.1规范&#xff0c;该规范将快充功率上限从100 W提升至240W&#xff08;支持Extended Power Range&#xff0c;简称EPR&#xff09;。充电功率的提升也让USB PD的应用从手机、笔记本电脑&#xff0c;扩展到便携式设备、物联…...

Redis 事务、持久化、复制原理分析

Redis 事务、持久化、复制原理分析 一、Redis 简介1.1 Redis1.2 Redis 事务 二、Redis 事务机制2.1 事务基本概念2.2 Redis 事务操作2.2.1 开启事务2.2.2 批量执行命令2.2.3 事务提交与回滚 三、Redis 持久化机制3.1 持久化机制基本概念3.2 Redis 持久化方案3.2.1 RDB 持久化3.…...

初识鸿蒙跨平台开发框架ArkUI-X

HarmonyOS是一款面向万物互联时代的、全新的分布式操作系统。在传统的单设备系统能力基础上&#xff0c;HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念&#xff0c;能够支持手机、平板、智能穿戴、智慧屏、车机等多种终端设备&#xff0c;提供全场景&#…...

uniapp开发小程序-分包(微信错误码:800051)

在使用uniapp开发小程序时&#xff0c;上传的时候因为文件过大&#xff0c;显示上传失败。 以下是开发过程中遇到的问题及解决方法&#xff1a; 1. 问题一&#xff1a;因为文件过大&#xff0c;显示上传失败 ①尝试过把本地使用的图片压缩到最小&#xff1b; ②把图片转换为网…...

n-皇后问题

希望这篇题解对你有用&#xff0c;麻烦动动手指点个赞或关注&#xff0c;感谢您的关注 不清楚蓝桥杯考什么的点点下方&#x1f447; 考点秘籍 想背纯享模版的伙伴们点点下方&#x1f447; 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不能错过的模板大全…...

JS如何向数组中添加数组

常见的办法有 1、push()方法 var arr [a, b, c,d]; arr.push(e); console.log(arr); // [a, b, c, d,e] 2、concat()方法 var arr1 [a, b, c]; var arr2 [d, e, f]; var arr3 arr1.concat(arr2); console.log(arr3); // [a, b, c, d, e, f] 3、可以使用ES6中的spread操作符…...

串口通信收发项目级一

void 定时器中断函数入口(void) { if(判断是否为定时器中断) { static uint16_t num定义静态变量; static uint8_t index定义静态变量; unsigned char buff_busy定义局部变量; if(串口中断接收数据数量>静态变量) { 静态变量串口中断接收数据数量; } else if(静态变量串口中…...

设计模式之七:适配器模式与外观模式

面向对象适配器将一个接口转换成另一个接口&#xff0c;以符合客户的期望。 // 用火鸡来冒充一下鸭子class Duck { public:virtual void quack() 0;virtual void fly() 0; };class Turkey { public:virtual void gobble() 0;virtual void fly() 0; };class TurkeyAdapter :…...

FFmpeg接收UDP码流

一、FFmpeg参数初始化&#xff1a; //在打开码流前指定各种参数比如:探测时间/超时时间/最大延时等//设置缓存大小,1080p可将值调大av_dict_set(&options, "buffer_size", "8192000", 0);//以tcp方式打开,如果以udp方式打开将tcp替换为udpav_dict_set(…...

【Pytroch】基于支持向量机算法的数据分类预测(Excel可直接替换数据)

【Pytroch】基于支持向量机算法的数据分类预测&#xff08;Excel可直接替换数据&#xff09; 1.模型原理2.数学公式3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果 1.模型原理 支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种强大的监…...

【Git】git初始化项目时 | git默认创建main分之 | 如何将git默认分支从main改为master

git 更改 branch 在 Git 中&#xff0c;如果你在第一次提交后想要将默认分支名从 main 修改为 master&#xff0c;你可以按照以下步骤进行操作&#xff1a; 创建 master 分支&#xff1a; 首先&#xff0c;你需要在当前的 main 分支基础上创建一个新的 master 分支。使用以下命…...

Vue3中配置environment

environment顾名思义就是环境&#xff0c;对于项目来说&#xff0c;无非就是&#xff1a; 开发环境&#xff1a;development生产环境&#xff1a;production 某些逻辑&#xff0c;配置等在两个不同的环境中要呈现出不同的状态&#xff0c;所以environment是一个必要的事情。 …...

前端基础积累_新技术_Vue_React_H5_奇怪的BUG_面试_招聘

前端之路 序 前几天在博客园收到了一封来自出版社的消息&#xff0c;说看到原来很久之前写的 < VueJS 源码分析的文章 > 希望能够联系他们出版社去写书。这样的事情虽然在博客园是会经常发生的&#xff0c;但是这也让我意识到了&#xff0c;多多写高质量的文章能够给 co…...

【密码学】维京密码

维京密码 瑞典罗特布鲁纳巨石上的图案看起来毫无意义&#xff0c;但是它确实是一种维京密码。如果我们注意到每组图案中长笔画和短笔画的数量&#xff0c;将得到一组数字2、4、2、3、3、5、2、3、3、6、3、5。组合配对得到24、23、35、23、36、35。现在考虑如图1.4所示的内容&a…...

小米基于 Flink 的实时计算资源治理实践

摘要&#xff1a;本文整理自小米高级软件工程师张蛟&#xff0c;在 Flink Forward Asia 2022 生产实践专场的分享。本篇内容主要分为四个部分&#xff1a; 发展现状与规模框架层治理实践平台层治理实践未来规划与展望 点击查看原文视频 & 演讲PPT 一、发展现状与规模 如上图…...

React源码解析18(3)------ beginWork的工作流程【mount】

摘要 OK&#xff0c;经过上一篇文章。我们调用了&#xff1a; const root document.querySelector(#root); ReactDOM.createRoot(root)生成了FilberRootNode和HostRootFilber。 并且二者之间的对应关系也已经确定。 而下一步我们就需要调用render方法来讲react元素挂载在ro…...

JAVA SpringBoot 项目 多线程、线程池的使用。

1.1 线程&#xff1a; 线程就是进程中的单个顺序控制流&#xff0c;也可以理解成是一条执行路径 单线程&#xff1a;一个进程中包含一个顺序控制流&#xff08;一条执行路径&#xff09; 多线程&#xff1a;一个进程中包含多个顺序控制流&#xff08;多条执行路径&#xff0…...

【数据结构与算法】动态规划算法

动态规划算法 应用场景 - 背包问题 背包问题&#xff1a;有一个背包&#xff0c;容量为 4 磅&#xff0c;现有如下物品&#xff1a; 物品重量价格吉他&#xff08;G&#xff09;11500音响&#xff08;S&#xff09;43000电脑&#xff08;L&#xff09;32000 要求达到的目标…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

21-Oracle 23 ai-Automatic SQL Plan Management(SPM)

小伙伴们&#xff0c;有没有迁移数据库完毕后或是突然某一天在同一个实例上同样的SQL&#xff0c; 性能不一样了、业务反馈卡顿、业务超时等各种匪夷所思的现状。 于是SPM定位开始&#xff0c;OCM考试中SPM必考。 其他的AWR、ASH、SQLHC、SQLT、SQL profile等换作下一个话题…...

在ubuntu等linux系统上申请https证书

使用 Certbot 自动申请 安装 Certbot Certbot 是 Let’s Encrypt 官方推荐的自动化工具&#xff0c;支持多种操作系统和服务器环境。 在 Ubuntu/Debian 上&#xff1a; sudo apt update sudo apt install certbot申请证书 纯手动方式&#xff08;不自动配置&#xff09;&…...

论文笔记:Large Language Models for Next Point-of-Interest Recommendation

SIGIR 2024 1 intro 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制 需要将异构的LBSN数据转换为数字&#xff0c;这可能导致上下文信息的固有含义丢失仅依赖于统计和人为设计来理解上下文信息&#xff0c;缺乏对上下文信息提供的语义概念的理解 ——>使用…...

ai流式文字返回前端和php的处理办法

PHP后端 php端主要是用到ob_flush和flush&#xff0c;头改为流式。 基本代码 代码如下&#xff1a; <?php header(Content-Type:text/event-stream); header(Cache-Control:no-cache); header(Connection:keep-alive);function streamPostRequest($url,$data){$chcurl_…...

vue中ref的详解以及react的ref对比

文章目录 1. ref是什么2. ref的使用3. ref的特性4. 使用场景5. 注意事项6. 与 React 的对比7. 动态 ref8. 函数式组件中的 ref9. 组合式 API 中的 ref10. 总结 1. ref是什么 ref 被用来给元素或子组件注册引用信息。引用信息将会注册在父组件的 $refs 对象上。可以通过实例对象…...