当前位置: 首页 > news >正文

OPENCV C++(八)HOG的实现

hog适合做行人的识别和车辆识别 对一定区域的形状描述方法

可以表示较大的形状 把图像分成一个一个小的区域的直方图

用cell做单位做直方图 

计算各个像素的梯度强度和方向

用3*3的像素组成一个cell 3*3的cell组成一个block来归一化 提高亮度不变性

常用SVM分类器一起使用 进行行人分类

代码思路:

将图像分成cell为单位 例如把图像分成9*9像素的cell为单位。用sobel计算梯度大小和方向。

遍历每一个cell,一个cell可以分8类,用角度当作数组的下标,也就是分类的依据,数组的大小也就是分类的一个类的大小就是梯度的大小相加。

计算两个图的直方图的直方图距离的大小累加值


计算hog直方图函数:

int calcHOG(cv::Mat src, float* hist, int nAngle, int cellSize)
{int nX = src.cols / cellSize;int nY = src.rows / cellSize;int binAngle = 360 / nAngle;Mat gx, gy;Mat mag, angle;Sobel(src, gx, CV_32F, 1, 0, 1);Sobel(src, gy, CV_32F, 0, 1, 1);cartToPolar(gx, gy, mag, angle, true);Rect roi;roi.x = 0;roi.y = 0;roi.width = cellSize;roi.height = cellSize;for (int i = 0; i < nY; i++) {for (int j = 0; j < nX; j++) {Mat roiMat;Mat roiMag;Mat roiAgl;roi.x = j * cellSize;roi.y = i * cellSize;//赋值图像roiMat = src(roi);roiMag = mag(roi);roiAgl = angle(roi);//当前cell第一个元素在数组中的位置int head = (i * nX + j) * nAngle;for (int n = 0; n < roiMat.rows; n++) {for (int m = 0; m < roiMat.cols; m++) {//计算角度在哪个bin,通过int自动取整实现int pos = (int)(roiAgl.at<float>(n, m) / binAngle);//以像素点的值为权重hist[head + pos] += roiMag.at<float>(n, m);}}}}return 0;}

mag梯度大小强度  angle是角度的mat

传入的参数就是:图像,直方图数组,分成几个angle类型(一般是8个),cell的大小。

计算两个直方图的距离 

float normL2(float* Hist1, float* Hist2, int size)
{float sum = 0;for (int i = 0; i < size; i++) {sum += (Hist1[i] - Hist2[i]) * (Hist1[i] - Hist2[i]);}sum = sqrt(sum);return sum;
}

第一种是自己申明数组 然后做hog

	Mat temple = imread("hogTemplate.jpg",0);Mat img1 = imread("img1.jpg",0);Mat img2 = imread("img2.jpg",0);float his[3000] = { 0 };float his1[3000] = { 0 };float his2[3000] = { 0 };printf("%d %d\r\n",temple.cols,temple.rows);calcHOG(temple, his, 8, 9);calcHOG(img1, his1, 8, 9);calcHOG(img2, his2, 8, 9);float summ = normL2(his, his1, 3000);float summ2 = normL2(his, his2, 3000);cout << summ <<"\r\n" << endl;cout << "------" << endl;cout << summ2 <<"\r\n" << endl;

用动态开辟内存数组来进行hog

	int nX = refMat.cols / blockSize;int nY = refMat.rows / blockSize;int bins = nX * nY * nAngle;float* ref_hist = new float[bins];memset(ref_hist, 0, sizeof(float) * bins);float* pl_hist = new float[bins];memset(pl_hist, 0, sizeof(float) * bins);float* bg_hist = new float[bins];memset(bg_hist, 0, sizeof(float) * bins);

 这是比较关键的代码 就是动态开辟一个内存

	delete[] ref_hist;delete[] pl_hist;delete[] bg_hist;destroyAllWindows();

记得要释放内存!

完整代码:

	cv::Mat refMat = imread("hogTemplate.jpg");cv::Mat plMat = imread("img1.jpg");cv::Mat bgMat = imread("img2.jpg");int nAngle = 8;int blockSize = 9;int nX = refMat.cols / blockSize;int nY = refMat.rows / blockSize;int bins = nX * nY * nAngle;float* ref_hist = new float[bins];memset(ref_hist, 0, sizeof(float) * bins);float* pl_hist = new float[bins];memset(pl_hist, 0, sizeof(float) * bins);float* bg_hist = new float[bins];memset(bg_hist, 0, sizeof(float) * bins);int reCode = 0;reCode = calcHOG(refMat, ref_hist, nAngle, blockSize);reCode = calcHOG(plMat, pl_hist, nAngle, blockSize);reCode = calcHOG(bgMat, bg_hist, nAngle, blockSize);float dis1 = normL2(ref_hist, pl_hist, bins);float dis2 = normL2(ref_hist, bg_hist, bins);std::cout << "distance between reference and img1:" << dis1 << std::endl;std::cout << "distance between reference and img2:" << dis2 << std::endl;(dis1 <= dis2) ? (std::cout << "img1 is similar" << std::endl) : (std::cout << "img2 is similar" << std::endl);delete[] ref_hist;delete[] pl_hist;delete[] bg_hist;destroyAllWindows();return 0;
}

 

有没有很疑惑 为啥两种计算的方式 他们hog值不一样?

因为第一种我把他灰度化了 所以值偏低,我们现在把第二种方法的也灰度化

 ok 简直一摸一样 结束实验

相关文章:

OPENCV C++(八)HOG的实现

hog适合做行人的识别和车辆识别 对一定区域的形状描述方法 可以表示较大的形状 把图像分成一个一个小的区域的直方图 用cell做单位做直方图 计算各个像素的梯度强度和方向 用3*3的像素组成一个cell 3*3的cell组成一个block来归一化 提高亮度不变性 常用SVM分类器一起使用…...

干货分享:制作婚礼请柬的技巧,从零基础起步

在现代社会&#xff0c;婚礼请柬已经成为了婚礼必备的一部分。而如何制作一个个性化的婚礼请柬呢&#xff1f;今天&#xff0c;我们将分享一个简便而可靠的制作方法&#xff0c;那就是使用乔拓云平台。 乔拓云平台是一个可靠的第三方制作工具&#xff0c;提供了丰富的H5模板&am…...

c语言每日一练(6)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;暑假时三天之内必有一更&#xff0c;到了开学之后&#xff0c;将看学业情…...

2023年国赛数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...

WebAPIs 第四天

1.日期对象 2.节点操作 3.M端事件 4.JS插件 一.日期对象 实例化时间对象方法时间戳 日期对象&#xff1a;用来表示时间的对象 作用&#xff1a;可以得到当前系统时间 1.1 实例化 ① 概念&#xff1a;在代码中发现了new关键字时&#xff0c;一般将这个操作称为实例化 …...

SQL 语句解析过程详解

SQL 语句解析过程详解&#xff1a; 1&#xff0e;输入SQL语句 2&#xff0e;词法分析------flex 使用词法分析器&#xff08;由Flex生成&#xff09;将 SQL 语句分解为一个个单词&#xff0c;这些单词被称为“标记“。标记包括关键字、标识符、运算符、分隔符等。 2.1 flex 原…...

单源最短路径【学习算法】

单源最短路径【学习算法】 前言版权推荐单源最短路径Java算法实现代码结果 带限制的单源最短路径1928. 规定时间内到达终点的最小花费LCP 35. 电动车游城市 最后 前言 2023-8-14 18:21:41 以下内容源自《【学习算法】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此…...

汽车上的电源模式详解

① 一般根据钥匙孔开关的位置来确定整车用电类别&#xff0c;汽车上电源可以分为常电&#xff0c;IG电&#xff0c;ACC电 1&#xff09;常电。常电表示蓄电池和发电机输出直接供电&#xff0c;即使点火开关在OFF档时&#xff0c;也有电量供应。一般来讲模块的记忆电源及需要在车…...

【碎碎念随笔】1、回顾我的电脑和编程经历

✏️ 闲着无事&#xff0c;讲述一下我的计算机和代码故事 一、初识计算机 &#x1f5a5;️ 余家贫&#xff0c;耕植无钱买电脑。大约六年级暑假&#xff0c;我在姐姐哪儿第一次接触到了计算机&#xff08;姐姐也是买的二手&#xff09;。 &#x1f5a5;️ 计算机真有趣&#x…...

背上花里胡哨的书包准备面试之webpack篇(+一些常问的面试题)

目录 webpack理解&#xff1f; webpack构建流程&#xff1f; loader解决什么问题&#xff1f; plugin解决什么问题&#xff1f; 编写loader和plugin的思路&#xff1f; webpack热更新&#xff1f; 如何提高webpack的构建速度&#xff1f; 问git常用命令&#xff1f; ht…...

你知道什么是Curriculum Training模型吗

随着深度学习技术的飞速发展&#xff0c;研究人员在不断探索新的训练方法和策略&#xff0c;以提高模型的性能和泛化能力。其中&#xff0c;Curriculum Training&#xff08;课程学习&#xff09;模型作为一种前沿的训练方法&#xff0c;引起了广泛的关注和研究。本文将深入探讨…...

vue 大文件视频切片上传处理方法

前端上传大文件、视频的时候会出现超时、过大、很慢等情况&#xff0c;为了解决这一问题&#xff0c;跟后端配合做了一个切片的功能。 我这个切片功能是基于 minion 的&#xff0c;后端会把文件放在minion服务器上。具体看后端怎么做 1、在项目的 util(这个文件夹是自己创建的…...

痞子衡嵌入式:AppCodeHub - 一站网罗恩智浦MCU应用程序

近日&#xff0c;恩智浦官方隆重上线了应用程序代码中心(Application Code Hub&#xff0c;简称 ACH)&#xff0c;这是恩智浦 MCUXpresso 软件生态的一个重要组成部分。痞子衡之所以要如此激动地告诉大家这个好消息&#xff0c;是因为 ACH 并不是又一个恩智浦官方 github proje…...

打造数字化营销闭环,破解精准获客难题

现阶段&#xff0c;企业需要进行数字化营销闭环&#xff0c;以实现更精确的客户获取。随着数字技术的迅猛发展&#xff0c;企业需要将在线广告、社交媒体营销和数据分析等工具相互结合&#xff0c;建立一个完整的数字化营销流程。通过使用客户细分、精准定位和个性化广告等手段…...

《雷达像智能识别对抗研究进展》阅读记录

&#xff08;1&#xff09;引言 ​ 神经网络通常存在鲁棒性缺陷&#xff0c;易受到对抗攻击的威胁。攻击者可以隐蔽的诱导雷达智能目标识别做出错误预测&#xff0c;如&#xff1a; ​ a图是自行车&#xff0c;加上对抗扰动后神经网络就会将其识别为挖掘机。 &#xff08;2&a…...

【AHB】初识 AHB 总线

AHB 与 APB、ASB同属于 AMBA 总线架构规范&#xff0c;该总线规范由 ARM 公司提出。 目录 一、AHB 总线 二、AHB 总线组成 三、AHB 主从通信过程 一、AHB 总线 AHB&#xff08;Advanced High Performance Bus&#xff09;,意为高级高性能总线&#xff0c;能将微控制器&…...

Linux服务使用宝塔面板搭建网站,通过内网穿透实现公网访问

文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 前言 宝塔面板作为简单好用的服务器运维管理面板&#xff0c;它支持Linux/Windows系统&#xff0c;我们可用它来一键配置LAMP/LNMP环境、网站、数据库、FTP等&…...

C++ 判断

判断结构要求程序员指定一个或多个要评估或测试的条件&#xff0c;以及条件为真时要执行的语句&#xff08;必需的&#xff09;和条件为假时要执行的语句&#xff08;可选的&#xff09;。 下面是大多数编程语言中典型的判断结构的一般形式&#xff1a; 判断语句 C 编程语言…...

“解引用“空指针一定会导致段错误吗?

可能有些朋友看见这个标题第一反应是嵌入式的某些内存中,0地址也是可以被正常访问的,所以对0地址的解引用不会发生错误,但我要说的情况不是这个,而是指一个真正的空指针,不仅是c/c中的0,(void*)0,NULL,还有nullptr,一个真正的空指针. 在c语言中,想获得某结构体的成员变量相对偏…...

釉面陶瓷器皿SOR/2016-175标准上架亚马逊加拿大站

亲爱的釉面陶瓷器皿和玻璃器皿制造商和卖家&#xff0c;亚马逊加拿大站将执行SOR/2016-175法规。这是一份新的法规&#xff0c;规定了含有铅和镉的釉面陶瓷器和玻璃器皿需要满足的要求。让我们一起来看一看&#xff0c;为什么要实行SOR/2016-175法规&#xff1f;这是一个保护消…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...