OPENCV C++(八)HOG的实现
hog适合做行人的识别和车辆识别 对一定区域的形状描述方法
可以表示较大的形状 把图像分成一个一个小的区域的直方图
用cell做单位做直方图
计算各个像素的梯度强度和方向
用3*3的像素组成一个cell 3*3的cell组成一个block来归一化 提高亮度不变性
常用SVM分类器一起使用 进行行人分类
代码思路:
将图像分成cell为单位 例如把图像分成9*9像素的cell为单位。用sobel计算梯度大小和方向。
遍历每一个cell,一个cell可以分8类,用角度当作数组的下标,也就是分类的依据,数组的大小也就是分类的一个类的大小就是梯度的大小相加。
计算两个图的直方图的直方图距离的大小累加值
计算hog直方图函数:
int calcHOG(cv::Mat src, float* hist, int nAngle, int cellSize)
{int nX = src.cols / cellSize;int nY = src.rows / cellSize;int binAngle = 360 / nAngle;Mat gx, gy;Mat mag, angle;Sobel(src, gx, CV_32F, 1, 0, 1);Sobel(src, gy, CV_32F, 0, 1, 1);cartToPolar(gx, gy, mag, angle, true);Rect roi;roi.x = 0;roi.y = 0;roi.width = cellSize;roi.height = cellSize;for (int i = 0; i < nY; i++) {for (int j = 0; j < nX; j++) {Mat roiMat;Mat roiMag;Mat roiAgl;roi.x = j * cellSize;roi.y = i * cellSize;//赋值图像roiMat = src(roi);roiMag = mag(roi);roiAgl = angle(roi);//当前cell第一个元素在数组中的位置int head = (i * nX + j) * nAngle;for (int n = 0; n < roiMat.rows; n++) {for (int m = 0; m < roiMat.cols; m++) {//计算角度在哪个bin,通过int自动取整实现int pos = (int)(roiAgl.at<float>(n, m) / binAngle);//以像素点的值为权重hist[head + pos] += roiMag.at<float>(n, m);}}}}return 0;}
mag梯度大小强度 angle是角度的mat
传入的参数就是:图像,直方图数组,分成几个angle类型(一般是8个),cell的大小。
计算两个直方图的距离
float normL2(float* Hist1, float* Hist2, int size)
{float sum = 0;for (int i = 0; i < size; i++) {sum += (Hist1[i] - Hist2[i]) * (Hist1[i] - Hist2[i]);}sum = sqrt(sum);return sum;
}
第一种是自己申明数组 然后做hog
Mat temple = imread("hogTemplate.jpg",0);Mat img1 = imread("img1.jpg",0);Mat img2 = imread("img2.jpg",0);float his[3000] = { 0 };float his1[3000] = { 0 };float his2[3000] = { 0 };printf("%d %d\r\n",temple.cols,temple.rows);calcHOG(temple, his, 8, 9);calcHOG(img1, his1, 8, 9);calcHOG(img2, his2, 8, 9);float summ = normL2(his, his1, 3000);float summ2 = normL2(his, his2, 3000);cout << summ <<"\r\n" << endl;cout << "------" << endl;cout << summ2 <<"\r\n" << endl;
用动态开辟内存数组来进行hog
int nX = refMat.cols / blockSize;int nY = refMat.rows / blockSize;int bins = nX * nY * nAngle;float* ref_hist = new float[bins];memset(ref_hist, 0, sizeof(float) * bins);float* pl_hist = new float[bins];memset(pl_hist, 0, sizeof(float) * bins);float* bg_hist = new float[bins];memset(bg_hist, 0, sizeof(float) * bins);
这是比较关键的代码 就是动态开辟一个内存
delete[] ref_hist;delete[] pl_hist;delete[] bg_hist;destroyAllWindows();
记得要释放内存!
完整代码:
cv::Mat refMat = imread("hogTemplate.jpg");cv::Mat plMat = imread("img1.jpg");cv::Mat bgMat = imread("img2.jpg");int nAngle = 8;int blockSize = 9;int nX = refMat.cols / blockSize;int nY = refMat.rows / blockSize;int bins = nX * nY * nAngle;float* ref_hist = new float[bins];memset(ref_hist, 0, sizeof(float) * bins);float* pl_hist = new float[bins];memset(pl_hist, 0, sizeof(float) * bins);float* bg_hist = new float[bins];memset(bg_hist, 0, sizeof(float) * bins);int reCode = 0;reCode = calcHOG(refMat, ref_hist, nAngle, blockSize);reCode = calcHOG(plMat, pl_hist, nAngle, blockSize);reCode = calcHOG(bgMat, bg_hist, nAngle, blockSize);float dis1 = normL2(ref_hist, pl_hist, bins);float dis2 = normL2(ref_hist, bg_hist, bins);std::cout << "distance between reference and img1:" << dis1 << std::endl;std::cout << "distance between reference and img2:" << dis2 << std::endl;(dis1 <= dis2) ? (std::cout << "img1 is similar" << std::endl) : (std::cout << "img2 is similar" << std::endl);delete[] ref_hist;delete[] pl_hist;delete[] bg_hist;destroyAllWindows();return 0;
}
有没有很疑惑 为啥两种计算的方式 他们hog值不一样?
因为第一种我把他灰度化了 所以值偏低,我们现在把第二种方法的也灰度化
ok 简直一摸一样 结束实验
相关文章:

OPENCV C++(八)HOG的实现
hog适合做行人的识别和车辆识别 对一定区域的形状描述方法 可以表示较大的形状 把图像分成一个一个小的区域的直方图 用cell做单位做直方图 计算各个像素的梯度强度和方向 用3*3的像素组成一个cell 3*3的cell组成一个block来归一化 提高亮度不变性 常用SVM分类器一起使用…...

干货分享:制作婚礼请柬的技巧,从零基础起步
在现代社会,婚礼请柬已经成为了婚礼必备的一部分。而如何制作一个个性化的婚礼请柬呢?今天,我们将分享一个简便而可靠的制作方法,那就是使用乔拓云平台。 乔拓云平台是一个可靠的第三方制作工具,提供了丰富的H5模板&am…...

c语言每日一练(6)
前言:每日一练系列,每一期都包含5道选择题,2道编程题,博主会尽可能详细地进行讲解,令初学者也能听的清晰。每日一练系列会持续更新,暑假时三天之内必有一更,到了开学之后,将看学业情…...

2023年国赛数学建模思路 - 复盘:校园消费行为分析
文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…...

WebAPIs 第四天
1.日期对象 2.节点操作 3.M端事件 4.JS插件 一.日期对象 实例化时间对象方法时间戳 日期对象:用来表示时间的对象 作用:可以得到当前系统时间 1.1 实例化 ① 概念:在代码中发现了new关键字时,一般将这个操作称为实例化 …...

SQL 语句解析过程详解
SQL 语句解析过程详解: 1.输入SQL语句 2.词法分析------flex 使用词法分析器(由Flex生成)将 SQL 语句分解为一个个单词,这些单词被称为“标记“。标记包括关键字、标识符、运算符、分隔符等。 2.1 flex 原…...
单源最短路径【学习算法】
单源最短路径【学习算法】 前言版权推荐单源最短路径Java算法实现代码结果 带限制的单源最短路径1928. 规定时间内到达终点的最小花费LCP 35. 电动车游城市 最后 前言 2023-8-14 18:21:41 以下内容源自《【学习算法】》 仅供学习交流使用 版权 禁止其他平台发布时删除以下此…...

汽车上的电源模式详解
① 一般根据钥匙孔开关的位置来确定整车用电类别,汽车上电源可以分为常电,IG电,ACC电 1)常电。常电表示蓄电池和发电机输出直接供电,即使点火开关在OFF档时,也有电量供应。一般来讲模块的记忆电源及需要在车…...

【碎碎念随笔】1、回顾我的电脑和编程经历
✏️ 闲着无事,讲述一下我的计算机和代码故事 一、初识计算机 🖥️ 余家贫,耕植无钱买电脑。大约六年级暑假,我在姐姐哪儿第一次接触到了计算机(姐姐也是买的二手)。 🖥️ 计算机真有趣&#x…...
背上花里胡哨的书包准备面试之webpack篇(+一些常问的面试题)
目录 webpack理解? webpack构建流程? loader解决什么问题? plugin解决什么问题? 编写loader和plugin的思路? webpack热更新? 如何提高webpack的构建速度? 问git常用命令? ht…...

你知道什么是Curriculum Training模型吗
随着深度学习技术的飞速发展,研究人员在不断探索新的训练方法和策略,以提高模型的性能和泛化能力。其中,Curriculum Training(课程学习)模型作为一种前沿的训练方法,引起了广泛的关注和研究。本文将深入探讨…...
vue 大文件视频切片上传处理方法
前端上传大文件、视频的时候会出现超时、过大、很慢等情况,为了解决这一问题,跟后端配合做了一个切片的功能。 我这个切片功能是基于 minion 的,后端会把文件放在minion服务器上。具体看后端怎么做 1、在项目的 util(这个文件夹是自己创建的…...

痞子衡嵌入式:AppCodeHub - 一站网罗恩智浦MCU应用程序
近日,恩智浦官方隆重上线了应用程序代码中心(Application Code Hub,简称 ACH),这是恩智浦 MCUXpresso 软件生态的一个重要组成部分。痞子衡之所以要如此激动地告诉大家这个好消息,是因为 ACH 并不是又一个恩智浦官方 github proje…...

打造数字化营销闭环,破解精准获客难题
现阶段,企业需要进行数字化营销闭环,以实现更精确的客户获取。随着数字技术的迅猛发展,企业需要将在线广告、社交媒体营销和数据分析等工具相互结合,建立一个完整的数字化营销流程。通过使用客户细分、精准定位和个性化广告等手段…...

《雷达像智能识别对抗研究进展》阅读记录
(1)引言 神经网络通常存在鲁棒性缺陷,易受到对抗攻击的威胁。攻击者可以隐蔽的诱导雷达智能目标识别做出错误预测,如: a图是自行车,加上对抗扰动后神经网络就会将其识别为挖掘机。 (2&a…...

【AHB】初识 AHB 总线
AHB 与 APB、ASB同属于 AMBA 总线架构规范,该总线规范由 ARM 公司提出。 目录 一、AHB 总线 二、AHB 总线组成 三、AHB 主从通信过程 一、AHB 总线 AHB(Advanced High Performance Bus),意为高级高性能总线,能将微控制器&…...

Linux服务使用宝塔面板搭建网站,通过内网穿透实现公网访问
文章目录 前言1. 环境安装2. 安装cpolar内网穿透3. 内网穿透4. 固定http地址5. 配置二级子域名6. 创建一个测试页面 前言 宝塔面板作为简单好用的服务器运维管理面板,它支持Linux/Windows系统,我们可用它来一键配置LAMP/LNMP环境、网站、数据库、FTP等&…...

C++ 判断
判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的)。 下面是大多数编程语言中典型的判断结构的一般形式: 判断语句 C 编程语言…...

“解引用“空指针一定会导致段错误吗?
可能有些朋友看见这个标题第一反应是嵌入式的某些内存中,0地址也是可以被正常访问的,所以对0地址的解引用不会发生错误,但我要说的情况不是这个,而是指一个真正的空指针,不仅是c/c中的0,(void*)0,NULL,还有nullptr,一个真正的空指针. 在c语言中,想获得某结构体的成员变量相对偏…...

釉面陶瓷器皿SOR/2016-175标准上架亚马逊加拿大站
亲爱的釉面陶瓷器皿和玻璃器皿制造商和卖家,亚马逊加拿大站将执行SOR/2016-175法规。这是一份新的法规,规定了含有铅和镉的釉面陶瓷器和玻璃器皿需要满足的要求。让我们一起来看一看,为什么要实行SOR/2016-175法规?这是一个保护消…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...