当前位置: 首页 > news >正文

genism word2vec方法

文章目录

  • 概述
  • 使用示例
  • 模型的保存与使用
  • 训练参数详解([原链接](https://blog.csdn.net/weixin_44852067/article/details/130221655))
  • 语料库训练

概述

word2vec是按句子来处理的Sentences(句子们)

使用示例

from gensim.models import Word2Vec
#sentences 是二维的向量,这个就是要用的语料库(庞大的语料库文件在第四节说明使用方法)
sentences = [["cat", "say", "meow"], ["dog", "say", "woof"]]#进行模型训练
model = Word2Vec(sentences,vector_size = 20, window = 2 , min_count = 1, epochs=7, negative=10,sg=1)
print("cat的词向量:\n",model.wv.get_vector('cat'))
print("\n和“cat”相关性最高的前20个词语:")
print(model.wv.most_similar('cat', topn = 5))# 与孔明最相关的前20个词语

模型的保存与使用

在上一步使用示例之后,对模型进行保存和使用:

# 模型的保存与加载
model.save("word2vec.model")
#这种情况存储下来可以继续训练
model = Word2Vec.load("word2vec.model")
#只存储词向量,是key:vector的形式,无法继续训练.binary表示是否是二进制文件
model.wv.save_word2vec_format("dic_model.model",binary = False)
# 模型继续增加语料进行训练
model.train([["hello", "world"]], total_examples=1, epochs=1)
print("cat的词向量:\n",model.wv.get_vector('cat'))

训练参数详解(原链接)

 classgensim.models.word2vec.Word2Vec(sentences=None, corpus_file=None, vector_size=100, alpha=0.025, window=5, min_count=5, max_vocab_size=None, sample=0.001, seed=1, workers=3, min_alpha=0.0001, sg=0, hs=0, negative=5, ns_exponent=0.75, cbow_mean=1, hashfxn=<built-in function hash>, epochs=5, null_word=0, trim_rule=None, sorted_vocab=1, batch_words=10000, compute_loss=False, callbacks=(), comment=None, max_final_vocab=None, shrink_windows=True)
  • sentences 可以是一个list,对于大语料集,建议使用BrownCorpus,Text8Corpus或lineSentence构建。
  • vector_size word向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好。推荐值为几十到几百。
  • alpha 学习率
  • window 表示当前词与预测词在一个句子中的最大距离是多少。
  • min_count 可以对字典做截断。词频少于min_count次数的单词会被丢弃掉,默认值为5。
  • max_vocab_size 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
  • sample 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5) seed 用于随机数发生器。与初始化词向量有关。
  • workers 参数控制训练的并行数。 sg 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
  • hs 如果为1则会采用hierarchica·softmax技巧。如果设置为0(default),则negative
  • sampling会被使用。 negative 如果>0,则会采用negative samping,用于设置多少个noise words。
  • cbow_mean 如果为0,则采用上下文词向量的和,如果为1(default)则采用均值。只有使用CBOW的时候才起作用。
  • hashfxn hash函数来初始化权重。默认使用python的hash函数。 epochs 迭代次数,默认为5。
  • trim_rule 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RULE_DISCARD,utils。RULE_KEEP或者utils。RULE_DEFAULT的函数。
  • sorted_vocab 如果为1(default),则在分配word index 的时候会先对单词基于频率降序排序。
  • batch_words 每一批的传递给线程的单词的数量,默认为10000
  • min_alpha 随着训练的进行,学习率线性下降到min_alpha

语料库训练

  • 使用自建语料库进行训练时,代码示例如下:
model = Word2Vec(LineSentence(open('corpus.txt', 'r',encoding = 'utf8')),vector_size = 20, window = 2 , min_count = 2, epochs=7, negative=10,sg=1)

其中,corput.txt是自己制作的预料库,LinSentence 函数在使用之前需要对待处理的文本数据进行分词(使用jieba库,使用可参考链接),并以空格分隔;函数在运行时,按行读取已经以空格分隔的文档。文档格式如图:

在这里插入图片描述

  • 使用已有语料库可以是:BrownCorpusTest8Corpus

相关文章:

genism word2vec方法

文章目录 概述使用示例模型的保存与使用训练参数详解&#xff08;[原链接](https://blog.csdn.net/weixin_44852067/article/details/130221655)&#xff09;语料库训练 概述 word2vec是按句子来处理的Sentences(句子们) 使用示例 from gensim.models import Word2Vec #sent…...

vue3自定义样式-路由-axios拦截器

基于vue,vite和elementPlus 基于elementPlus自定义样式 history模式的路由 在根目录配置jsconfig.json&#xff0c;添加json的配置项。输入自动联想到src目录&#xff0c;是根路径的别名拦截器 如果存在多个接口地址&#xff0c;可以配置多个axios实例 数据持久化之后&#x…...

【mysql】事务的四种特性的理解

&#x1f307;个人主页&#xff1a;平凡的小苏 &#x1f4da;学习格言&#xff1a;命运给你一个低的起点&#xff0c;是想看你精彩的翻盘&#xff0c;而不是让你自甘堕落&#xff0c;脚下的路虽然难走&#xff0c;但我还能走&#xff0c;比起向阳而生&#xff0c;我更想尝试逆风…...

C++中List的实现

前言 数据结构中&#xff0c;我们了解到了链表&#xff0c;但是我们使用时需要自己去实现链表才能用&#xff0c;但是C出现了list将这一切皆变为现。list可以看作是一个带头双向循环的链表结构&#xff0c;并且可以在任意的正确范围内进行增删查改数据的容器。list容器一样也是…...

ElementUI 树形表格的使用以及表单嵌套树形表格的校验问题等汇总

目录 一、树形表格如何添加序号体现层级关系 二、树形表格展开收缩图标位置放置&#xff0c;设置指定列 三、表单嵌套树形表格的校验问题以及如何给校验rules传参 普通表格绑定如下&#xff1a;这种方法只能校验表格的第一层&#xff0c;树形需要递归设置子级节点prop。 树…...

解决“Unable to start embedded Tomcat“错误的完整指南

系列文章目录 文章目录 系列文章目录前言一、查看错误信息二、确认端口是否被占用三、检查依赖版本兼容性四、清理临时文件夹五、检查应用程序配置六、检查依赖冲突七、查看异常堆栈信息八、升级或降级Spring Boot版本总结前言 在使用Spring Boot开发应用程序时,有时可能会遇…...

JVS开源基础框架:平台基本信息介绍

JVS是面向软件开发团队可以快速实现应用的基础开发脚手架&#xff0c;主要定位于企业信息化通用底座&#xff0c;采用微服务分布式框架&#xff0c;提供丰富的基础功能&#xff0c;集成众多业务引擎&#xff0c;它灵活性强&#xff0c;界面化配置对开发者友好&#xff0c;底层容…...

C++ - max_element

在C中&#xff0c;要找到一个数组中的最大元素&#xff0c;可以使用 std::max_element 函数。以下是使用步骤&#xff1a; 包含 <algorithm> 头文件&#xff0c;这里定义了 std::max_element 函数。声明一个数组&#xff0c;并初始化它。使用 std::max_element 函数来查找…...

聚隆转债上市价格预测

聚隆转债 基本信息 转债名称&#xff1a;聚隆转债&#xff0c;评级&#xff1a;A&#xff0c;发行规模&#xff1a;2.185亿元。 正股名称&#xff1a;南京聚隆&#xff0c;今日收盘价&#xff1a;16.64元&#xff0c;转股价格&#xff1a;18.27元。 当前转股价值 转债面值 / 转…...

pytest自动生成测试类 demo

一、 pytest自动生成测试类 demo # -*- coding:utf-8 -*- # Author: 喵酱 # time: 2023 - 08 -15 # File: test4.py # desc: import pytest import unittest# 动态生成测试类def create_test_class(class_name:str, test_cases:list) -> type:"""生成测试类…...

服务器卡顿了该如何处理

服务器卡顿了该如何处理 当Windows系统的服务器出现卡顿问题时&#xff0c;以下是一些常见的故障排除步骤&#xff1a; 1.检查网络连接&#xff1a;确保服务器的网络连接正常。检查网络设备、交换机、防火墙等设备&#xff0c;确保它们正常运行。尝试通过其他计算机访问服务器…...

常量对象 只能调用 常成员函数

一、遇到问题&#xff1a; //函数声明 void ReadRanFile(CString szFilePath); const CFvArray<CString>& GetPanelGrade() const { return m_fvArrayPanelGrade; } //在另一个文件中调用ReadtRanFile这个函数 const CFsJudConfig& psJudConfig m_pFsDefJu…...

Progressive-Hint Prompting Improves Reasoning in Large Language Models

本文是LLM系列的文章&#xff0c;针对《Progressive-Hint Prompting Improves Reasoning in Large Language Models》的翻译。 渐进提示改进了大型语言模型中的推理 摘要1 引言2 相关工作3 渐进提示Prompting4 实验5 结论6 实现细节7 不足与未来工作8 广泛的影响9 具有不同提示…...

mysql中INSERT INTO ... ON DUPLICATE KEY UPDATE的用法,以及与REPLACE INTO 语句用法的异同

INSERT INTO ... ON DUPLICATE KEY UPDATE 是 MySQL 中一种用于插入数据并处理重复键冲突的语法。与之相似的还有 REPLACE INTO 语句。以下是它们的用法和异同点的详细说明&#xff1a; 一、INSERT INTO ... ON DUPLICATE KEY UPDATE INSERT INTO ... ON DUPLICATE KEY UPDAT…...

wireshark 实用过滤表达式(针对ip、协议、端口、长度和内容)

wireshark 实用过滤表达式&#xff08;针对ip、协议、端口、长度和内容&#xff09; 1. 关键字 “与”&#xff1a;“eq” 和 “”等同&#xff0c;可以使用 “and” 表示并且&#xff0c; “或”&#xff1a;“or”表示或者。 “非”&#xff1a;“!" 和 "not”…...

MATLAB图形窗口固定

起因是上次作图的时候写了&#xff1a; clc clear close all 这三个典型的刷新语句 清空工作区、命令行并且关闭图窗 就导致每次我把图窗拉到合适的位置观察&#xff0c;再一次点击运行都会重新刷新在出生点&#xff08;x&#xff09; 所以想把图窗固定在某个位置 显然更…...

【数据结构】_7.二叉树概念与基本操作

目录 1.树形结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的应用—表示文件系统的目录树结构 ​编辑​2.二叉树 2.1 概念 2.2 特殊二叉树 2.3 二叉树的性质 2.4 二叉树的存储结构 2.4.1 顺序存储结构&#xff08;数组存储结构&#xff09; 2.4.2…...

Flink之Partitioner(分区规则)

Flink之Partitioner(分区规则) 方法注释global()全部发往1个taskbroadcast()广播(前面的文章讲解过,这里不做阐述)forward()上下游并行度一致时一对一发送,和同一个算子连中算子的OneToOne是一回事shuffle()随机分配(只是随机,同Spark的shuffle不同)rebalance()轮询分配,默认机…...

tk切换到mac的code分享

文章目录 前言一、基础环境配置二、开发软件与扩展1.用到的开发软件与平替、扩展情况 总结 前言 最近换上了coding人生的第一台mac&#xff0c;以前一直偏好tk&#xff0c;近来身边的朋友越来越多的用mac了&#xff0c;win的自动更新越来越占磁盘了&#xff0c;而且win11抛弃了…...

spark的standalone 分布式搭建

一、环境准备 集群环境hadoop11&#xff0c;hadoop12 &#xff0c;hadoop13 安装 zookeeper 和 HDFS 1、启动zookeeper -- 启动zookeeper(11,12,13都需要启动) xcall.sh zkServer.sh start -- 或者 zk.sh start -- xcall.sh 和zk.sh都是自己写的脚本-- 查看进程 jps -- 有…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...