当前位置: 首页 > news >正文

数据结构--拓扑排序

数据结构–拓扑排序

AOV⽹

A O V ⽹ \color{red}AOV⽹ AOV(Activity On Vertex NetWork,⽤顶点表示活动的⽹):
D A G 图 \color{red}DAG图 DAG(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边 < V i , V j > <V_i, V_j> <Vi,Vj>表示活动Vi必须先于活动 V j V_j Vj进⾏

注:如果图中存在环路就不是 A O V 网 \color{red}注:如果图中存在环路就不是AOV网 注:如果图中存在环路就不是AOV

DAG图是指有向无环图(Directed Acyclic Graph),是一种有向图的特殊形式。它由一些有向边连接的节点组成,并且不存在任何形式的环。换句话说,从任何一个节点出发,沿着有向边的方向无法经过一系列的节点再回到原始节点。DAG图常用于表示一些具有依赖关系的任务或事件,其中每个节点表示一个任务或事件,有向边表示任务或事件之间的依赖关系。DAG图在计算机科学和工程中有广泛的应用,例如任务调度、编译器优化、数据流分析等领域。

拓扑排序

拓扑排序 \color{red}拓扑排序 拓扑排序:在图论中,由⼀个 有向⽆环图 \color{red}有向⽆环图 有向环图的顶点组成的序列,当且仅当满⾜下列条件时,称为该图的⼀个拓扑排序:
① 每个顶点出现且只出现⼀次。
② 若顶点A在序列中排在顶点B的前⾯,则在图中不存在从顶点B到顶点A的路径。或定义为:拓扑排序是对有向⽆环图的顶点的⼀种排序,它使得若存在⼀条从顶点A到顶点B的路径,则在排序中顶点B出现在顶点A的后⾯。每个AOV⽹都有⼀个或多个拓扑排序序列。

上图其中一个拓扑排序:

拓扑排序的实现:

① 从AOV⽹中选择⼀个没有前驱的顶点并输出。
② 从⽹中删除该顶点和所有以它为起点的有向边。
③ 重复①和②直到当前的AOV⽹为空或当前⽹中不存在⽆前驱的顶点为⽌。

注:拓扑排序序列可能有多个 \color{red}注:拓扑排序序列可能有多个 注:拓扑排序序列可能有多个

拓扑排序代码实现

王道书上代码

个人code

#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010;
int n, m;
int h[N], e[N], ne[N], idx;
int q[N], d[N];
void add(int a, int b)
{e[idx] = b;ne[idx] = h[a];h[a] = idx++;
}
bool topsort()
{int tt = -1, hh = 0;for(int i = 1; i <= n; i++)if(!d[i])q[++tt] = i;while(hh <= tt){int t = q[hh++];for(int i = h[t]; i != -1; i = ne[i]){int j = e[i];d[j]--;if(!d[j]) q[++tt] = j;}}return tt == n - 1;
}
int main()
{cin >> n >> m;memset(h, -1, sizeof(h));for(int i = 0; i < n; i++){int a, b;cin >> a >> b;add(a, b);d[b]++;}if(topsort()){for(int i = 0; i < n; i++)cout << q[i] << ' ';cout << endl;}else cout << "-1" << endl;return 0;
}

判断是否存在拓扑序

时间复杂度 O(n + m), n 表示点数,m表示边数
bool topsort()
{int hh = 0, tt = -1;// d[i] 存储点i的⼊度for (int i = 1; i <= n; i ++ )if (!d[i])q[ ++ tt] = i;while (hh <= tt){int t = q[hh ++ ];for (int i = h[t]; i != -1; i = ne[i]){int j = e[i];if (-- d[j] == 0)q[ ++ tt] = j;}}// 如果所有点都⼊队了,说明存在拓扑序列;否则不存在拓扑序列。return tt == n - 1;
}

逆拓扑排序

对⼀个AOV⽹,如果采⽤下列步骤进⾏排序,则称之为 逆拓扑排序 \color{red}逆拓扑排序 逆拓扑排序
① 从AOV⽹中选择⼀个没有后继( 出度为 0 \color{red}出度为0 出度为0)的顶点并输出。
② 从⽹中删除该顶点和所有以它为终点的有向边。
③ 重复①和②直到当前的AOV⽹为空。

其中一个逆拓扑排序

逆拓扑排序代码实现

逆拓扑排序的实现(DFS算法)

DFS判断是否有环:

int vis[N], cnt; // timestamp
int per[N];
bool cyc[N];// 标记
void dfs(int u) //找环 & 标记环
{vis[u] = ++cnt;for (auto v : g[u]){if (per[u] == v)continue;if (!vis[v]){per[v] = u;dfs(v);}else if (vis[u] > vis[v]){for (int i = u; i != v; i = per[i])cyc[i] = true;cyc[v] = true;}}
}

如果单纯判断是否有环,只需要引进父结点(fa)
dfs(u,fa)
如果 u == fa 则存在环

知识点回顾与重要考点

相关文章:

数据结构--拓扑排序

数据结构–拓扑排序 AOV⽹ A O V ⽹ \color{red}AOV⽹ AOV⽹(Activity On Vertex NetWork&#xff0c;⽤顶点表示活动的⽹)&#xff1a; ⽤ D A G 图 \color{red}DAG图 DAG图&#xff08;有向⽆环图&#xff09;表示⼀个⼯程。顶点表示活动&#xff0c;有向边 < V i , V j …...

算法竞赛备赛之搜索与图论训练提升,暑期集训营培训

目录 1.DFS和BFS 1.1.DFS深度优先搜索 1.2.BFS广度优先搜索 2.树与图的遍历&#xff1a;拓扑排序 3.最短路 3.1.迪杰斯特拉算法 3.2.贝尔曼算法 3.3.SPFA算法 3.4.多源汇最短路Floy算法 4.最小生成树 4.1.普利姆算法 4.2.克鲁斯卡尔算法 5.二分图&#xff1a;染色法…...

Linux驱动入门(6.2)按键驱动和LED驱动 --- 将逻辑电平与物理电平分离

前言 &#xff08;1&#xff09;在学习完Linux驱动入门&#xff08;6&#xff09;LED驱动—设备树之后&#xff0c;我们发现一个问题&#xff0c;设备树明明的gpios信息明明有三个元素gpios <&gpio5 3 GPIO_ACTIVE_LOW>; &gpio5 3 用来确定控制那个引脚&#xf…...

CentOS系统环境搭建(十四)——CentOS7.9安装elasticsearch-head

centos系统环境搭建专栏&#x1f517;点击跳转 关于node的安装请看上一篇CentOS系统环境搭建&#xff08;十三&#xff09;——CentOS7安装nvm&#xff0c;&#x1f517;点击跳转。 CentOS7.9安装elasticsearch-head 文章目录 CentOS7.9安装elasticsearch-head1.下载2.解压3.修…...

设计HTML5图像和多媒体

在网页中的文本信息直观、明了&#xff0c;而多媒体信息更富内涵和视觉冲击力。恰当使用不同类型的多媒体可以展示个性&#xff0c;突出重点&#xff0c;吸引用户。在HTML5之前&#xff0c;需要借助插件为网页添加多媒体&#xff0c;如Adobe Flash Player、苹果的QuickTime等。…...

基于YOLOv8模型和Caltech数据集的行人检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要 基于YOLOv8模型和Caltech数据集的行人检测系统可用于日常生活中检测与定位行人&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集…...

Flutter 宽高自适应

在Flutter开发中也需要宽高自适应&#xff0c;手动写一个工具类&#xff0c;集成之后在像素后面直接使用 px或者 rpx即可。 工具类代码如下&#xff1a; import dart:ui;class HYSizeFit {static double screenWidth 0.0;static double screenHeight 0.0;static double phys…...

LeetCode 0833. 字符串中的查找与替换

【LetMeFly】833.字符串中的查找与替换 力扣题目链接&#xff1a;https://leetcode.cn/problems/find-and-replace-in-string/ 你会得到一个字符串 s (索引从 0 开始)&#xff0c;你必须对它执行 k 个替换操作。替换操作以三个长度均为 k 的并行数组给出&#xff1a;indices,…...

Redis对象和五种常用数据类型

Redisobject 对象 对象分为键对象和值对象 键对象一般是string类型 值对象可以是string&#xff0c;list&#xff0c;set,zset,hash q&#xff1a;redisobj的结构 typedef struct redisObject { //类型 unsigned type:4; //编码 unsigned encoding:4; //指向底层实现…...

常用的Elasticsearch查询DSL

1.基本查询 GET /index_name/_search {"query": {"match": {"dispatchClass": "1"}} }2.多条件查询 GET /index_name/_search {"query": {"bool": {"must": [{"match": {"createUser&…...

计算机网络笔记

TCP有连接可靠服务 TCP特点&#xff1a; 1.TCP是面向连接的传输层协议&#xff1b; 2.每条TCP连接只能有两个端点&#xff0c;每条TCP连接是一对一的&#xff1b; 3.TCP提供可靠交付&#xff0c;保证传送数据无差错&#xff0c;不丢失&#xff0c;不重复且有序&#xff1b; 4.…...

高效反编译luac文件

对于游戏开发人员,有时候希望从一些游戏apk中反编译出源代码,进行学习,但是如果你触碰到法律边缘,那么你要非常小心。 这篇文章,我针对一些用lua写客户端或者服务器的编译过的luac文件进行反编译,获取其源代码的过程。 这里我不赘述如何反编译解压apk包的过程了,只说重点…...

密码湘军,融合创新!麒麟信安参展2023商用密码大会,铸牢数据安全坚固堡垒

2023年8月9日至11日&#xff0c;商用密码大会在郑州国际会展中心正式开幕。本次大会由国家密码管理局指导&#xff0c;中国密码学会支持&#xff0c;郑州市人民政府、河南省密码管理局主办&#xff0c;以“密码赋能美好发展”为主题&#xff0c;旨在推进商用密码创新驱动、前沿…...

关于视频监控平台EasyCVR视频汇聚平台建设“明厨亮灶”具体实施方案以及应用

一、方案背景 近几年来&#xff0c;餐饮行业的食品安全、食品卫生等新闻频频发生&#xff0c;比如某火锅店、某网红奶茶&#xff0c;食材以次充好、后厨卫生被爆堪忧&#xff0c;种种问题引起大众关注和热议。这些负面新闻不仅让餐饮门店的品牌口碑暴跌&#xff0c;附带的连锁…...

区块链系统探索之路:私钥的压缩和WIF格式详解

在前面章节中&#xff0c;我们详细介绍了公钥的压缩&#xff0c;在比特币网络中&#xff0c;一个私钥可以对应两个地址&#xff0c;一个地址是由未压缩公钥所生成的地址&#xff0c;另一个就是由压缩公钥所创建的地址&#xff0c;从公钥到区块链地址的转换算法&#xff0c;我们…...

DiffusionDet: Diffusion Model for Object Detection

DiffusionDet: Diffusion Model for Object Detection 论文概述不同之处整体流程 论文题目&#xff1a;DiffusionDet: Diffusion Model for Object Detection 论文来源&#xff1a;arXiv preprint 2022 论文地址&#xff1a;https://arxiv.org/abs/2211.09788 论文代码&#xf…...

CH01_重构、第一个示例

概述 在这一章节&#xff0c;作者给出了一个戏剧演出团售票的示例&#xff1a;剧目有悲剧&#xff08;tragedy&#xff09;和喜剧&#xff08;comedy&#xff09;&#xff1b;为了卖出更多的票&#xff0c;剧团则更具观众的数量来为下次演出打折扣&#xff08;大致意思是这次的…...

学习篇之React Fiber概念及原理

什么是React Fibber&#xff1f; React Fiber 是 React 框架的一种底层架构&#xff0c;为了改进 React 的渲染引擎&#xff0c;使其更加高效、灵活和可扩展。 传统上&#xff0c;React 使用一种称为堆栈调和递归算法来处理虚拟 DOM 的更新&#xff0c;这种方法在大型应用或者…...

商城-学习整理-高级-全文检索-ES(九)

目录 一、ES简介1、网址2、基本概念1、Index&#xff08;索引&#xff09;2、Type&#xff08;类型&#xff09;3、Document&#xff08;文档&#xff09;4、倒排索引机制4.1 正向索引和倒排索引4.2 正向索引4.3 倒排索引 3、相关软件及下载地址3.1 Kibana简介3.2 logstash简介…...

无人机跟随一维高度避障场景--逻辑分析

无人机跟随一维高度避障场景--逻辑分析 1. 源由2. 视频3. 问题3.1 思维发散3.2 问题收敛 4. 图示4.1 水平模式4.2 下坡模式4.3 上坡模式4.4 碰撞分析 5. 总结5.1 一维高度避障场景5.2 业界跟随产品5.3 APM集成跟随 6. 参考资料7. 补充资料 - 大疆智能跟随7.1 炸机7.2 成功 1. 源…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...