神经网络基础-神经网络补充概念-37-其他正则化方法
概念
L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。
L2 正则化(Ridge Regularization):L2 正则化通过在损失函数中添加参数的平方和作为惩罚项,使得参数值保持较小。适用于减小参数大小,减轻参数之间的相关性。
弹性网络正则化(Elastic Net Regularization):弹性网络是 L1 正则化和 L2 正则化的结合,综合了两者的优势。适用于同时进行特征选择和参数限制。
数据增强(Data Augmentation):数据增强是通过对训练数据进行随机变换来扩展数据集,以提供更多的样本。这有助于模型更好地泛化到不同的数据变化。
早停(Early Stopping):早停是一种简单的正则化方法,它通过在训练过程中监控验证集上的性能,并在性能不再改善时停止训练,从而避免模型过拟合训练数据。
批标准化(Batch Normalization):批标准化是一种在每个小批次数据上进行标准化的技术,有助于稳定网络的训练,减少内部协变量偏移,也可以视为一种正则化方法。
权重衰减(Weight Decay):权重衰减是在损失函数中添加参数的权重平方和或权重绝对值之和,以限制参数的大小。
DropConnect:类似于 Dropout,DropConnect 随机地将神经元与其输入连接断开,而不是将神经元的输出置为零。
代码实现
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler# 加载数据
data = load_iris()
X = data.data
y = data.target# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = keras.utils.to_categorical(y, num_classes=3)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 定义模型
def build_model(regularization=None):model = keras.Sequential([layers.Input(shape=(X_train.shape[1],)),layers.Dense(64, activation='relu', kernel_regularizer=regularization),layers.Dense(32, activation='relu', kernel_regularizer=regularization),layers.Dense(3, activation='softmax')])return model# L1 正则化
model_l1 = build_model(keras.regularizers.l1(0.01))
model_l1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l1.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)# L2 正则化
model_l2 = build_model(keras.regularizers.l2(0.01))
model_l2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_l2.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)# 弹性网络正则化
model_elastic = build_model(keras.regularizers.l1_l2(l1=0.01, l2=0.01))
model_elastic.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_elastic.fit(X_train, y_train, epochs=50, batch_size=8, validation_split=0.1)# 早停(Early Stopping)
early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
model_early = build_model()
model_early.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model_early.fit(X_train, y_train, epochs=100, batch_size=8, validation_split=0.1, callbacks=[early_stopping])# 评估模型
print("L1 Regularization:")
model_l1.evaluate(X_test, y_test)print("L2 Regularization:")
model_l2.evaluate(X_test, y_test)print("Elastic Net Regularization:")
model_elastic.evaluate(X_test, y_test)print("Early Stopping:")
model_early.evaluate(X_test, y_test)相关文章:
神经网络基础-神经网络补充概念-37-其他正则化方法
概念 L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。 L2 正则化(Ridge Regularization&…...
掌握Python的X篇_36_定义类、名称空间
本篇将会重新回到python语法的主线,并且开展新的篇章,那就是面向对象的编程。 文章目录 1. 面向对象2. 定义类3. 类的名称空间性质 1. 面向对象 面向对象是一种编程的思想,并不是限制在某一种语言上的,不同语言面向对象的表达能力…...
回归预测 | MATLAB实现GRU门控循环单元多输入多输出
回归预测 | MATLAB实现GRU门控循环单元多输入多输出 目录 回归预测 | MATLAB实现GRU门控循环单元多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个…...
数据结构--拓扑排序
数据结构–拓扑排序 AOV⽹ A O V ⽹ \color{red}AOV⽹ AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤ D A G 图 \color{red}DAG图 DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边 < V i , V j …...
算法竞赛备赛之搜索与图论训练提升,暑期集训营培训
目录 1.DFS和BFS 1.1.DFS深度优先搜索 1.2.BFS广度优先搜索 2.树与图的遍历:拓扑排序 3.最短路 3.1.迪杰斯特拉算法 3.2.贝尔曼算法 3.3.SPFA算法 3.4.多源汇最短路Floy算法 4.最小生成树 4.1.普利姆算法 4.2.克鲁斯卡尔算法 5.二分图:染色法…...
Linux驱动入门(6.2)按键驱动和LED驱动 --- 将逻辑电平与物理电平分离
前言 (1)在学习完Linux驱动入门(6)LED驱动—设备树之后,我们发现一个问题,设备树明明的gpios信息明明有三个元素gpios <&gpio5 3 GPIO_ACTIVE_LOW>; &gpio5 3 用来确定控制那个引脚…...
CentOS系统环境搭建(十四)——CentOS7.9安装elasticsearch-head
centos系统环境搭建专栏🔗点击跳转 关于node的安装请看上一篇CentOS系统环境搭建(十三)——CentOS7安装nvm,🔗点击跳转。 CentOS7.9安装elasticsearch-head 文章目录 CentOS7.9安装elasticsearch-head1.下载2.解压3.修…...
设计HTML5图像和多媒体
在网页中的文本信息直观、明了,而多媒体信息更富内涵和视觉冲击力。恰当使用不同类型的多媒体可以展示个性,突出重点,吸引用户。在HTML5之前,需要借助插件为网页添加多媒体,如Adobe Flash Player、苹果的QuickTime等。…...
基于YOLOv8模型和Caltech数据集的行人检测系统(PyTorch+Pyside6+YOLOv8模型)
摘要 基于YOLOv8模型和Caltech数据集的行人检测系统可用于日常生活中检测与定位行人,利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集…...
Flutter 宽高自适应
在Flutter开发中也需要宽高自适应,手动写一个工具类,集成之后在像素后面直接使用 px或者 rpx即可。 工具类代码如下: import dart:ui;class HYSizeFit {static double screenWidth 0.0;static double screenHeight 0.0;static double phys…...
LeetCode 0833. 字符串中的查找与替换
【LetMeFly】833.字符串中的查找与替换 力扣题目链接:https://leetcode.cn/problems/find-and-replace-in-string/ 你会得到一个字符串 s (索引从 0 开始),你必须对它执行 k 个替换操作。替换操作以三个长度均为 k 的并行数组给出:indices,…...
Redis对象和五种常用数据类型
Redisobject 对象 对象分为键对象和值对象 键对象一般是string类型 值对象可以是string,list,set,zset,hash q:redisobj的结构 typedef struct redisObject { //类型 unsigned type:4; //编码 unsigned encoding:4; //指向底层实现…...
常用的Elasticsearch查询DSL
1.基本查询 GET /index_name/_search {"query": {"match": {"dispatchClass": "1"}} }2.多条件查询 GET /index_name/_search {"query": {"bool": {"must": [{"match": {"createUser&…...
计算机网络笔记
TCP有连接可靠服务 TCP特点: 1.TCP是面向连接的传输层协议; 2.每条TCP连接只能有两个端点,每条TCP连接是一对一的; 3.TCP提供可靠交付,保证传送数据无差错,不丢失,不重复且有序; 4.…...
高效反编译luac文件
对于游戏开发人员,有时候希望从一些游戏apk中反编译出源代码,进行学习,但是如果你触碰到法律边缘,那么你要非常小心。 这篇文章,我针对一些用lua写客户端或者服务器的编译过的luac文件进行反编译,获取其源代码的过程。 这里我不赘述如何反编译解压apk包的过程了,只说重点…...
密码湘军,融合创新!麒麟信安参展2023商用密码大会,铸牢数据安全坚固堡垒
2023年8月9日至11日,商用密码大会在郑州国际会展中心正式开幕。本次大会由国家密码管理局指导,中国密码学会支持,郑州市人民政府、河南省密码管理局主办,以“密码赋能美好发展”为主题,旨在推进商用密码创新驱动、前沿…...
关于视频监控平台EasyCVR视频汇聚平台建设“明厨亮灶”具体实施方案以及应用
一、方案背景 近几年来,餐饮行业的食品安全、食品卫生等新闻频频发生,比如某火锅店、某网红奶茶,食材以次充好、后厨卫生被爆堪忧,种种问题引起大众关注和热议。这些负面新闻不仅让餐饮门店的品牌口碑暴跌,附带的连锁…...
区块链系统探索之路:私钥的压缩和WIF格式详解
在前面章节中,我们详细介绍了公钥的压缩,在比特币网络中,一个私钥可以对应两个地址,一个地址是由未压缩公钥所生成的地址,另一个就是由压缩公钥所创建的地址,从公钥到区块链地址的转换算法,我们…...
DiffusionDet: Diffusion Model for Object Detection
DiffusionDet: Diffusion Model for Object Detection 论文概述不同之处整体流程 论文题目:DiffusionDet: Diffusion Model for Object Detection 论文来源:arXiv preprint 2022 论文地址:https://arxiv.org/abs/2211.09788 论文代码…...
CH01_重构、第一个示例
概述 在这一章节,作者给出了一个戏剧演出团售票的示例:剧目有悲剧(tragedy)和喜剧(comedy);为了卖出更多的票,剧团则更具观众的数量来为下次演出打折扣(大致意思是这次的…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
