深度学习(36)—— 图神经网络GNN(1)
深度学习(36)—— 图神经网络GNN(1)
这个系列的所有代码我都会放在git上,欢迎造访
文章目录
- 深度学习(36)—— 图神经网络GNN(1)
- 1. 基础知识
- 2.使用场景
- 3. 图卷积神经网络GCN
- (1)基本思想
- 4. GNN基本框架——pytorch_geometric
- (1)数据
- (2)可视化
- (3)网络定义
- (4)训练模型(semi-supervised)
1. 基础知识
-
GNN考虑的事当前的点和周围点之间的关系
-
邻接矩阵是对称的稀疏矩阵,表示图中各个点之间的关系
-
图神经网络的输入是每个节点的特征和邻接矩阵
-
文本数据可以用图的形式表示吗?
文本数据也可以表示图的形式,邻接矩阵表示连接关系 -
邻接矩阵中并不是一个N* N的矩阵,而是一个source,target的2* N的矩阵
-
信息传递神经网络:
每个点的特征如何更新??
——考虑他们的邻居,更新的方式可以自己设置:最大,最小,平均,求和等 -
GNN可以有多层,图的结构不发生改变,即当前点所连接的点不发生改变(邻接矩阵不发生变化)【卷积中存在感受野的概念,在GNN中同样存在,GNN的感受野也随着层数的增大变大】
-
GNN输出的特征可以干什么?
- 各个节点的特征组合,对图分类【graph级别任务】
- 对各个节点分类【node级别任务】
- 对边分类【edge级别任务】
利用图结构得到特征,最终做什么自定义!
2.使用场景
为什么CV和NLP中不用GNN?
因为图像和文本的数据格式很固定,传统神经网络格式是固定的,输入的东西格式是固定的- 化学、医疗
- 分子、原子结构
- 药物靶点
- 道路交通,动态流量预测
- 社交网络——研究人
GNN输入格式比较随意,是不规则的数据结构, 主要用于输入数据不规则的时候
3. 图卷积神经网络GCN
图卷积和卷积完全不同
- GCN不是单纯的有监督学习,多数是半监督,有的点是没有标签的,在计算损失的时候只考虑有标签的点。针对数据量少的情况也可以训练
(1)基本思想
- 网络层次:第一层对于每个点都要做更新,最后输出每个点对应的特征向量【一般不会做特别深层的】
- 图中的基本组成:G(原图)A(邻接)D(度)F(特征)
- 度矩阵的倒数* 邻接矩阵 *度矩阵的倒数——>得到新的邻接矩阵【左乘对行做归一化,右乘对列做归一化】
- 两到三层即可,太多效果不佳
4. GNN基本框架——pytorch_geometric
它实现了各种GNN的方法
注意:安装过程中不要pip install,会失败!根据自己的device和python版本去下载scatter,pattern等四个依赖,先安装他们然后再pip install torch_geometric==2.0
这里记得是2.0版本否则会出现 TypeError: Expected ‘Iterator‘ as the return annotation for __iter__
of SMILESParser, but found ty
献上github地址:这里
下面是一个demo
(1)数据
这里使用的是和这个package提供的数据,具体参考:club
from torch_geometric.datasets import KarateClubdataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0] # Get the first graph object.
在torch_geometric中图用Data的格式,Data的对象:可以在文档中详细了解
其中的属性
- edge_index:表示图的连接关系(start,end两个序列)
- node features:每个点的特征
- node labels:每个点的标签
- train_mask:有的节点没有标签(用来表示哪些节点要计算损失)
(2)可视化
from torch_geometric.utils import to_networkxG = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)
(3)网络定义
GCN layer的定义:
可以在官网的文档做详细了解
卷积层就有很多了:
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConvclass GCN(torch.nn.Module):def __init__(self):super().__init__()torch.manual_seed(1234)self.conv1 = GCNConv(dataset.num_features, 4) # 只需定义好输入特征和输出特征即可self.conv2 = GCNConv(4, 4)self.conv3 = GCNConv(4, 2)self.classifier = Linear(2, dataset.num_classes)def forward(self, x, edge_index):h = self.conv1(x, edge_index) # 输入特征与邻接矩阵(注意格式,上面那种)h = h.tanh()h = self.conv2(h, edge_index)h = h.tanh()h = self.conv3(h, edge_index)h = h.tanh() # 分类层out = self.classifier(h)return out, hmodel = GCN()
print(model)_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')# 输出最后分类前的中间特征shapevisualize_embedding(h, color=data.y)
这时很分散
(4)训练模型(semi-supervised)
import timemodel = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.def train(data):optimizer.zero_grad() out, h = model(data.x, data.edge_index) #h是两维向量,主要是为了画图方便 loss = criterion(out[data.train_mask], data.y[data.train_mask]) # semi-supervisedloss.backward() optimizer.step() return loss, hfor epoch in range(401):loss, h = train(data)if epoch % 10 == 0:visualize_embedding(h, color=data.y, epoch=epoch, loss=loss)time.sleep(0.3)
然后就可以看到一系列图,看点的变化情况了
相关文章:

深度学习(36)—— 图神经网络GNN(1)
深度学习(36)—— 图神经网络GNN(1) 这个系列的所有代码我都会放在git上,欢迎造访 文章目录 深度学习(36)—— 图神经网络GNN(1)1. 基础知识2.使用场景3. 图卷积神经网…...

深入理解JVM——垃圾回收与内存分配机制详细讲解
所谓垃圾回收,也就是要回收已经“死了”的对象。 那我们如何判断哪些对象“存活”,哪些已经“死去”呢? 一、判断对象已死 1、引用计数算法 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器就加一&…...

基于SSH框架实现的管理系统(包含java源码+数据库)
资料下载链接 介绍 基于SSH框架的管理系统 简洁版 ; 实现 登录 、 注册 、 增 、 删 、 改 、 查 ; 可继续完善增加前端、校验、其他功能等; 可作为 SSH(Structs Spring Hibernate)项目 开发练习基础模型…...
图像识别代做服务:实现创新应用的新契机
导言: 随着人工智能和图像处理技术的不断进步,图像识别已经成为了许多领域中的关键应用。然而,图像识别技术的开发和应用往往需要庞大的团队和大量的资源。这就是为什么图像识别代做服务正在崭露头角。本文将探讨图像识别代做服务如何成为实现…...

Coreutils工具包,Windows下使用Linux命令
之前总结过两篇有关【如何在Windows系统下使用Linux的常用命令】的文章: GnuWin32,Windows下使用Linux命令 UnxUtils工具包,Windows下使用Linux命令 今天再推荐一个类似的工具包Coreutils 一、简介 GNU core utilities是GNU操作系统基本…...
神经网络基础-神经网络补充概念-13-python中的广播
概念 在 Python 中,广播(Broadcasting)是一种用于在不同形状的数组之间执行二元操作的机制。广播允许你在不显式复制数据的情况下,对不同形状的数组进行运算。这在处理数组的时候非常有用,尤其是在科学计算、数据分析…...

HDFS原理剖析
一、概述 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是…...

css学习2(利用id与class修改元素)
1、id选择器可以为标有特定id的html元素指定特定的样式。 2、选择器以#开头,后跟某id的属性值。 3、class选择器用于描述一组元素的样式,class可以在多个元素使用。 4、类选择器用.选择。 5、指定特定的元素使用class。 6、元素的多个类用空格分开&…...
wsl2(debian)安装python的不同版本例如3.8
要在Debian上安装 Python 3.8,可以按照以下步骤操作: 1.确保你的 Debian 系统已经更新到最新版本,可以使用以下命令更新: sudo apt update sudo apt upgrade2.安装 Python 3.8 的依赖项,以及构建 Python 时需要的工具…...
Python教程(9)——Python变量类型列表list的用法介绍
列表操作 创建列表访问列表更改列表元素增加列表元素修改列表元素删除列表元素 删除列表 在Python中,列表(list)是一种有序、可变的数据结构,用于存储多个元素。列表可以包含不同类型的元素,包括整数、浮点数、字符串等…...

springboot+VUE智慧公寓管理系统java web酒店民宿房屋住宿报修信息jsp源代码
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 springbootVUE智慧公寓管理系统 系统有2权限…...
神经网络基础-神经网络补充概念-36-dropout正则化
概念 Dropout 是一种常用的正则化技术,用于减少深度神经网络中的过拟合问题。它在训练过程中随机地将一部分神经元的输出置为零,从而强制模型在训练过程中学习多个独立的子模型,从而减少神经元之间的依赖关系,提高模型的泛化能力…...
Go语言基础之变量和常量
标识符与关键字 标识符 在编程语言中标识符就是程序员定义的具有特殊意义的词,比如变量名、常量名、函数名等等。 Go语言中标识符由字母数字和_(下划线)组成,并且只能以字母和_开头。 举几个例子:abc, _, _123, a123 关键字 关…...

Spring Boot 项目实现 Spring AOP
【注】实现在SpringBoot项目中,同时给两个类的方法添加AOP前置通知 1、创建一个SpringBoot项目 2、创建两个目标类和方法 package com.tqazy.learn_spring_project.spring_aop;import org.springframework.stereotype.Service;/*** ClassName SpringAopUserServi…...

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的固定帧率(C#)
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C#) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...
js拼接字符串
在js中,你可以使用字符串拼接的方式创建新的字符串。 下面是一些常用的方法: 1、使用运算符: var str1 "Hello"; var str2 "World"; var result str1 " " str2; console.log(result); // 输出…...
神经网络基础-神经网络补充概念-37-其他正则化方法
概念 L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。 L2 正则化(Ridge Regularization&…...
掌握Python的X篇_36_定义类、名称空间
本篇将会重新回到python语法的主线,并且开展新的篇章,那就是面向对象的编程。 文章目录 1. 面向对象2. 定义类3. 类的名称空间性质 1. 面向对象 面向对象是一种编程的思想,并不是限制在某一种语言上的,不同语言面向对象的表达能力…...

回归预测 | MATLAB实现GRU门控循环单元多输入多输出
回归预测 | MATLAB实现GRU门控循环单元多输入多输出 目录 回归预测 | MATLAB实现GRU门控循环单元多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个…...

数据结构--拓扑排序
数据结构–拓扑排序 AOV⽹ A O V ⽹ \color{red}AOV⽹ AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤ D A G 图 \color{red}DAG图 DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边 < V i , V j …...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...