深度学习(36)—— 图神经网络GNN(1)
深度学习(36)—— 图神经网络GNN(1)
这个系列的所有代码我都会放在git上,欢迎造访
文章目录
- 深度学习(36)—— 图神经网络GNN(1)
- 1. 基础知识
- 2.使用场景
- 3. 图卷积神经网络GCN
- (1)基本思想
- 4. GNN基本框架——pytorch_geometric
- (1)数据
- (2)可视化
- (3)网络定义
- (4)训练模型(semi-supervised)
1. 基础知识
-
GNN考虑的事当前的点和周围点之间的关系
-
邻接矩阵是对称的稀疏矩阵,表示图中各个点之间的关系
-
图神经网络的输入是每个节点的特征和邻接矩阵
-
文本数据可以用图的形式表示吗?
文本数据也可以表示图的形式,邻接矩阵表示连接关系 -
邻接矩阵中并不是一个N* N的矩阵,而是一个source,target的2* N的矩阵
-
信息传递神经网络:
每个点的特征如何更新??
——考虑他们的邻居,更新的方式可以自己设置:最大,最小,平均,求和等 -
GNN可以有多层,图的结构不发生改变,即当前点所连接的点不发生改变(邻接矩阵不发生变化)【卷积中存在感受野的概念,在GNN中同样存在,GNN的感受野也随着层数的增大变大】
-
GNN输出的特征可以干什么?
- 各个节点的特征组合,对图分类【graph级别任务】
- 对各个节点分类【node级别任务】
- 对边分类【edge级别任务】
利用图结构得到特征,最终做什么自定义!
2.使用场景
为什么CV和NLP中不用GNN?
因为图像和文本的数据格式很固定,传统神经网络格式是固定的,输入的东西格式是固定的- 化学、医疗
- 分子、原子结构
- 药物靶点
- 道路交通,动态流量预测
- 社交网络——研究人
GNN输入格式比较随意,是不规则的数据结构, 主要用于输入数据不规则的时候
3. 图卷积神经网络GCN
图卷积和卷积完全不同
- GCN不是单纯的有监督学习,多数是半监督,有的点是没有标签的,在计算损失的时候只考虑有标签的点。针对数据量少的情况也可以训练
(1)基本思想
- 网络层次:第一层对于每个点都要做更新,最后输出每个点对应的特征向量【一般不会做特别深层的】
- 图中的基本组成:G(原图)A(邻接)D(度)F(特征)
- 度矩阵的倒数* 邻接矩阵 *度矩阵的倒数——>得到新的邻接矩阵【左乘对行做归一化,右乘对列做归一化】
- 两到三层即可,太多效果不佳
4. GNN基本框架——pytorch_geometric
它实现了各种GNN的方法
注意:安装过程中不要pip install,会失败!根据自己的device和python版本去下载scatter,pattern等四个依赖,先安装他们然后再pip install torch_geometric==2.0
这里记得是2.0版本否则会出现 TypeError: Expected ‘Iterator‘ as the return annotation for __iter__
of SMILESParser, but found ty
献上github地址:这里
下面是一个demo
(1)数据
这里使用的是和这个package提供的数据,具体参考:club
from torch_geometric.datasets import KarateClubdataset = KarateClub()
print(f'Dataset: {dataset}:')
print('======================')
print(f'Number of graphs: {len(dataset)}')
print(f'Number of features: {dataset.num_features}')
print(f'Number of classes: {dataset.num_classes}')data = dataset[0] # Get the first graph object.
在torch_geometric中图用Data的格式,Data的对象:可以在文档中详细了解
其中的属性
- edge_index:表示图的连接关系(start,end两个序列)
- node features:每个点的特征
- node labels:每个点的标签
- train_mask:有的节点没有标签(用来表示哪些节点要计算损失)
(2)可视化
from torch_geometric.utils import to_networkxG = to_networkx(data, to_undirected=True)
visualize_graph(G, color=data.y)
(3)网络定义
GCN layer的定义:
可以在官网的文档做详细了解
卷积层就有很多了:
import torch
from torch.nn import Linear
from torch_geometric.nn import GCNConvclass GCN(torch.nn.Module):def __init__(self):super().__init__()torch.manual_seed(1234)self.conv1 = GCNConv(dataset.num_features, 4) # 只需定义好输入特征和输出特征即可self.conv2 = GCNConv(4, 4)self.conv3 = GCNConv(4, 2)self.classifier = Linear(2, dataset.num_classes)def forward(self, x, edge_index):h = self.conv1(x, edge_index) # 输入特征与邻接矩阵(注意格式,上面那种)h = h.tanh()h = self.conv2(h, edge_index)h = h.tanh()h = self.conv3(h, edge_index)h = h.tanh() # 分类层out = self.classifier(h)return out, hmodel = GCN()
print(model)_, h = model(data.x, data.edge_index)
print(f'Embedding shape: {list(h.shape)}')# 输出最后分类前的中间特征shapevisualize_embedding(h, color=data.y)
这时很分散
(4)训练模型(semi-supervised)
import timemodel = GCN()
criterion = torch.nn.CrossEntropyLoss() # Define loss criterion.
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) # Define optimizer.def train(data):optimizer.zero_grad() out, h = model(data.x, data.edge_index) #h是两维向量,主要是为了画图方便 loss = criterion(out[data.train_mask], data.y[data.train_mask]) # semi-supervisedloss.backward() optimizer.step() return loss, hfor epoch in range(401):loss, h = train(data)if epoch % 10 == 0:visualize_embedding(h, color=data.y, epoch=epoch, loss=loss)time.sleep(0.3)
然后就可以看到一系列图,看点的变化情况了
相关文章:

深度学习(36)—— 图神经网络GNN(1)
深度学习(36)—— 图神经网络GNN(1) 这个系列的所有代码我都会放在git上,欢迎造访 文章目录 深度学习(36)—— 图神经网络GNN(1)1. 基础知识2.使用场景3. 图卷积神经网…...

深入理解JVM——垃圾回收与内存分配机制详细讲解
所谓垃圾回收,也就是要回收已经“死了”的对象。 那我们如何判断哪些对象“存活”,哪些已经“死去”呢? 一、判断对象已死 1、引用计数算法 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器就加一&…...

基于SSH框架实现的管理系统(包含java源码+数据库)
资料下载链接 介绍 基于SSH框架的管理系统 简洁版 ; 实现 登录 、 注册 、 增 、 删 、 改 、 查 ; 可继续完善增加前端、校验、其他功能等; 可作为 SSH(Structs Spring Hibernate)项目 开发练习基础模型…...
图像识别代做服务:实现创新应用的新契机
导言: 随着人工智能和图像处理技术的不断进步,图像识别已经成为了许多领域中的关键应用。然而,图像识别技术的开发和应用往往需要庞大的团队和大量的资源。这就是为什么图像识别代做服务正在崭露头角。本文将探讨图像识别代做服务如何成为实现…...

Coreutils工具包,Windows下使用Linux命令
之前总结过两篇有关【如何在Windows系统下使用Linux的常用命令】的文章: GnuWin32,Windows下使用Linux命令 UnxUtils工具包,Windows下使用Linux命令 今天再推荐一个类似的工具包Coreutils 一、简介 GNU core utilities是GNU操作系统基本…...
神经网络基础-神经网络补充概念-13-python中的广播
概念 在 Python 中,广播(Broadcasting)是一种用于在不同形状的数组之间执行二元操作的机制。广播允许你在不显式复制数据的情况下,对不同形状的数组进行运算。这在处理数组的时候非常有用,尤其是在科学计算、数据分析…...

HDFS原理剖析
一、概述 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是…...

css学习2(利用id与class修改元素)
1、id选择器可以为标有特定id的html元素指定特定的样式。 2、选择器以#开头,后跟某id的属性值。 3、class选择器用于描述一组元素的样式,class可以在多个元素使用。 4、类选择器用.选择。 5、指定特定的元素使用class。 6、元素的多个类用空格分开&…...
wsl2(debian)安装python的不同版本例如3.8
要在Debian上安装 Python 3.8,可以按照以下步骤操作: 1.确保你的 Debian 系统已经更新到最新版本,可以使用以下命令更新: sudo apt update sudo apt upgrade2.安装 Python 3.8 的依赖项,以及构建 Python 时需要的工具…...
Python教程(9)——Python变量类型列表list的用法介绍
列表操作 创建列表访问列表更改列表元素增加列表元素修改列表元素删除列表元素 删除列表 在Python中,列表(list)是一种有序、可变的数据结构,用于存储多个元素。列表可以包含不同类型的元素,包括整数、浮点数、字符串等…...

springboot+VUE智慧公寓管理系统java web酒店民宿房屋住宿报修信息jsp源代码
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 springbootVUE智慧公寓管理系统 系统有2权限…...
神经网络基础-神经网络补充概念-36-dropout正则化
概念 Dropout 是一种常用的正则化技术,用于减少深度神经网络中的过拟合问题。它在训练过程中随机地将一部分神经元的输出置为零,从而强制模型在训练过程中学习多个独立的子模型,从而减少神经元之间的依赖关系,提高模型的泛化能力…...
Go语言基础之变量和常量
标识符与关键字 标识符 在编程语言中标识符就是程序员定义的具有特殊意义的词,比如变量名、常量名、函数名等等。 Go语言中标识符由字母数字和_(下划线)组成,并且只能以字母和_开头。 举几个例子:abc, _, _123, a123 关键字 关…...

Spring Boot 项目实现 Spring AOP
【注】实现在SpringBoot项目中,同时给两个类的方法添加AOP前置通知 1、创建一个SpringBoot项目 2、创建两个目标类和方法 package com.tqazy.learn_spring_project.spring_aop;import org.springframework.stereotype.Service;/*** ClassName SpringAopUserServi…...

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的固定帧率(C#)
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C#) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...
js拼接字符串
在js中,你可以使用字符串拼接的方式创建新的字符串。 下面是一些常用的方法: 1、使用运算符: var str1 "Hello"; var str2 "World"; var result str1 " " str2; console.log(result); // 输出…...
神经网络基础-神经网络补充概念-37-其他正则化方法
概念 L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。 L2 正则化(Ridge Regularization&…...
掌握Python的X篇_36_定义类、名称空间
本篇将会重新回到python语法的主线,并且开展新的篇章,那就是面向对象的编程。 文章目录 1. 面向对象2. 定义类3. 类的名称空间性质 1. 面向对象 面向对象是一种编程的思想,并不是限制在某一种语言上的,不同语言面向对象的表达能力…...

回归预测 | MATLAB实现GRU门控循环单元多输入多输出
回归预测 | MATLAB实现GRU门控循环单元多输入多输出 目录 回归预测 | MATLAB实现GRU门控循环单元多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个…...

数据结构--拓扑排序
数据结构–拓扑排序 AOV⽹ A O V ⽹ \color{red}AOV⽹ AOV⽹(Activity On Vertex NetWork,⽤顶点表示活动的⽹): ⽤ D A G 图 \color{red}DAG图 DAG图(有向⽆环图)表示⼀个⼯程。顶点表示活动,有向边 < V i , V j …...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

多种风格导航菜单 HTML 实现(附源码)
下面我将为您展示 6 种不同风格的导航菜单实现,每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...