当前位置: 首页 > news >正文

HDFS原理剖析

一、概述

HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是在文件创建时的写入或者在现有文件之后的添加操作。HDFS保证一个文件在一个时刻只被一个调用者执行写操作,而可以被多个调用者执行读操作。

二、HDFS结构

HDFS包含主、备NameNode和多个DataNode,如下图所示。
HDFS是一个Master/Slave的架构,在Master上运行NameNode,而在每一个Slave上运行DataNode,ZKFC需要和NameNode一起运行。
NameNode和DataNode之间的通信都是建立在TCP/IP的基础之上的。NameNode、DataNode、ZKFC和JournalNode能部署在运行Linux的服务器上。
在这里插入图片描述

名称描述
NameNode用于管理文件系统的命名空间、目录结构、元数据信息以及提供备份机制等,分为:1. Active NameNode:管理文件系统的命名空间、维护文件系统的目录结构树以及元数据信息;记录写入的每个“数据块”与其归属文件的对应关系。2. Standby NameNode:与Active NameNode中的数据保持同步;随时准备在Active NameNode出现异常时接管其服务。3.Observer NameNode:与Active NameNode中的数据保持同步,处理来自客户端的读请求。
DataNode用于存储每个文件的“数据块”数据,并且会周期性地向NameNode报告该DataNode的数据存放情况。
JournalNodeHA集群下,用于同步主备NameNode之间的元数据信息。
ZKFCZKFC是需要和NameNode一一对应的服务,即每个NameNode都需要部署ZKFC。它负责监控NameNode的状态,并及时把状态写入ZooKeeper。ZKFC也有选择谁作为Active NameNode的权利。
ZK ClusterZooKeeper是一个协调服务,帮助ZKFC执行主NameNode的选举。
HttpFS gatewayHttpFS是个单独无状态的gateway进程,对外提供webHDFS接口,对HDFS使用FileSystem接口对接。可用于不同Hadoop版本间的数据传输,及用于访问在防火墙后的HDFS(HttpFS用作gateway)。

HttpFS是个单独无状态的gateway进程,对外提供webHDFS接口,对HDFS使用FileSystem接口对接。可用于不同Hadoop版本间的数据传输,及用于访问在防火墙后的HDFS(HttpFS用作gateway)。

三、HDFS原理

使用HDFS的副本机制来保证数据的可靠性,HDFS中每保存一个文件则自动生成1个备份文件,即共2个副本。HDFS副本数可通过“dfs.replication”参数查询。

  • 当集群中Core节点规格选择为非本地盘(hdd)时,若集群中只有一个Core节点,则HDFS默认副本数为1。若集群中Core节点数大于等于2,则HDFS默认副本数为2。
  • 当集群中Core节点规格选择为本地盘(hdd)时,若集群中只有一个Core节点,则HDFS默认副本数为1。若集群中有两个Core节点,则HDFS默认副本数为2。若集群中Core节点数大于等于3,则HDFS默认副本数为3。
    在这里插入图片描述

HDFS组件支持以下部分特性:

  • HDFS组件支持纠删码,使得数据冗余减少到50%,且可靠性更高,并引入条带化的块存储结构,最大化的利用现有集群单节点多磁盘的能力,使得数据写入性能在引入编码过程后,仍和原来多副本冗余的性能接近。
  • 支持HDFS组件上节点均衡调度和单节点内的磁盘均衡调度,有助于扩容节点或扩容磁盘后的HDFS存储性能提升。

关于Hadoop的架构和详细原理介绍,请参见:http://hadoop.apache.org/。

四、HDFS HA方案背景

在Hadoop2.0.0之前,HDFS集群中存在单点故障问题。由于每个集群只有一个NameNode,如果NameNode所在机器发生故障,将导致HDFS集群无法使用,除非NameNode重启或者在另一台机器上启动。这在两个方面影响了HDFS的整体可用性:

  1. 当异常情况发生时,如机器崩溃,集群将不可用,除非重新启动NameNode。
  2. 计划性的维护工作,如软硬件升级等,将导致集群停止工作。

针对以上问题,HDFS高可用性方案通过自动或手动(可配置)的方式,在一个集群中为NameNode启动一个热替换的NameNode备份。当一台机器故障时,可以迅速地自动进行NameNode主备切换。或者当主NameNode节点需要进行维护时,通过集群管理员控制,可以手动进行NameNode主备切换,从而保证集群在维护期间的可用性。

有关HDFS自动故障转移功能,请参阅:
https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoophdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover

五、HDFS HA实现方案

在这里插入图片描述
在一个典型的HA集群中(如上图所示),需要把两个NameNodes配置在两台独立的机器上。在任何一个时间点,只有一个NameNode处于Active状态,另一个处于Standby状态。Active节点负责处理所有客户端操作,Standby节点时刻保持与Active节点同步的状态以便在必要时进行快速主备切换。

为保持Active和Standby节点的数据一致性,两个节点都要与一组称为JournalNode的节点通信。当Active对文件系统元数据进行修改时,会将其修改日志保存到大多数的JournalNode节点中,例如有3个JournalNode,则日志会保存在至少2个节点中。Standby节点监控JournalNodes的变化,并同步来自Active节点的修改。根据修改日志,Standby节点将变动应用到本地文件系统元数据中。一旦发生故障转移,Standby节点能够确保与Active节点的状态是一致的。这保证了文件系统元数据在故障转移时在Active和Standby之间是完全同步的。

为保证故障转移快速进行,Standby需要时刻保持最新的块信息,为此DataNodes同时向两个NameNodes发送块信息和心跳。

对一个HA集群,保证任何时刻只有一个NameNode是Active状态至关重要。否则,命名空间会分为两部分,有数据丢失和产生其他错误的风险。为保证这个属性,防止“split-brain”问题的产生,JournalNodes在任何时刻都只允许一个NameNode写入。在故障转移时,将变为Active状态的NameNode获得写入JournalNodes的权限,这会有效防止其他NameNode的Active状态,使得切换安全进行。

关于HDFS高可用性方案的更多信息,可参考如下链接:

https://hadoop.apache.org/docs/r3.3.1/hadoop-project-dist/hadoophdfs/HDFSHighAvailabilityWithQJM.html

六、HDFS和HBase的关系

HDFS是Apache的Hadoop项目的子项目,HBase利用Hadoop HDFS作为其文件存储系统。HBase位于结构化存储层,Hadoop HDFS为HBase提供了高可靠性的底层存储支持。除了HBase产生的一些日志文件,HBase中的所有数据文件都可以存储在Hadoop HDFS文件系统上。

七、HDFS和MapReduce的关系

  • HDFS是Hadoop分布式文件系统,具有高容错和高吞吐量的特性,可以部署在价格低廉的硬件上,存储应用程序的数据,适合有超大数据集的应用程序。
  • 而MapReduce是一种编程模型,用于大数据集(大于1TB)的并行运算。在MapReduce程序中计算的数据可以来自多个数据源,如Local FileSystem、HDFS、数据库等。最常用的是HDFS,可以利用HDFS的高吞吐性能读取大规模的数据进行计算。同时在计算完成后,也可以将数据存储到HDFS。

八、HDFS和Spark的关系

通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。

分解来看,Spark分成控制端(Driver)和执行端(Executor)。控制端负责任务调度,执行端负责任务执行。
读取文件的过程如下图所示。
在这里插入图片描述
读取文件步骤的详细描述如下所示:

  1. Driver与HDFS交互获取File A的文件信息。
  2. HDFS返回该文件具体的Block信息。
  3. Driver根据具体的Block数据量,决定一个并行度,创建多个Task去读取这些文件Block。
  4. 在Executor端执行Task并读取具体的Block,作为RDD(弹性分布数据集)的一部分。

写入文件的过程如下图所示。
在这里插入图片描述
HDFS文件写入的详细步骤如下所示:

  1. Driver创建要写入文件的目录。
  2. 根据RDD分区分块情况,计算出写数据的Task数,并下发这些任务到Executor。
  3. Executor执行这些Task,将具体RDD的数据写入到步骤1创建的目录下。

九、HDFS和ZooKeeper的关系

ZooKeeper与HDFS的关系如下图所示
在这里插入图片描述
ZKFC(ZKFailoverController)作为一个ZooKeeper集群的客户端,用来监控NameNode的状态信息。ZKFC进程仅在部署了NameNode的节点中存在。HDFS NameNode的Active和Standby节点均部署有zkfc进程。

  1. HDFS NameNode的ZKFC连接到ZooKeeper,把主机名等信息保存到ZooKeeper中,即“/hadoop-ha”下的znode目录里。先创建znode目录的NameNode节点为主节点,另一个为备节点。HDFS NameNode Standby通过ZooKeeper定时读取NameNode信息。
  2. 当主节点进程异常结束时,HDFS NameNode Standby通过ZooKeeper感知“/hadoop-ha”目录下发生了变化,NameNode会进行主备切换。

相关文章:

HDFS原理剖析

一、概述 HDFS是Hadoop的分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠的分布式读写。HDFS针对的使用场景是数据读写具有“一次写,多次读”的特征,而数据“写”操作是顺序写,也就是…...

css学习2(利用id与class修改元素)

1、id选择器可以为标有特定id的html元素指定特定的样式。 2、选择器以#开头,后跟某id的属性值。 3、class选择器用于描述一组元素的样式,class可以在多个元素使用。 4、类选择器用.选择。 5、指定特定的元素使用class。 6、元素的多个类用空格分开&…...

wsl2(debian)安装python的不同版本例如3.8

要在Debian上安装 Python 3.8,可以按照以下步骤操作: 1.确保你的 Debian 系统已经更新到最新版本,可以使用以下命令更新: sudo apt update sudo apt upgrade2.安装 Python 3.8 的依赖项,以及构建 Python 时需要的工具…...

Python教程(9)——Python变量类型列表list的用法介绍

列表操作 创建列表访问列表更改列表元素增加列表元素修改列表元素删除列表元素 删除列表 在Python中,列表(list)是一种有序、可变的数据结构,用于存储多个元素。列表可以包含不同类型的元素,包括整数、浮点数、字符串等…...

springboot+VUE智慧公寓管理系统java web酒店民宿房屋住宿报修信息jsp源代码

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 springbootVUE智慧公寓管理系统 系统有2权限&#xf…...

神经网络基础-神经网络补充概念-36-dropout正则化

概念 Dropout 是一种常用的正则化技术,用于减少深度神经网络中的过拟合问题。它在训练过程中随机地将一部分神经元的输出置为零,从而强制模型在训练过程中学习多个独立的子模型,从而减少神经元之间的依赖关系,提高模型的泛化能力…...

Go语言基础之变量和常量

标识符与关键字 标识符 在编程语言中标识符就是程序员定义的具有特殊意义的词,比如变量名、常量名、函数名等等。 Go语言中标识符由字母数字和_(下划线)组成,并且只能以字母和_开头。 举几个例子:abc, _, _123, a123 关键字 关…...

Spring Boot 项目实现 Spring AOP

【注】实现在SpringBoot项目中,同时给两个类的方法添加AOP前置通知 1、创建一个SpringBoot项目 2、创建两个目标类和方法 package com.tqazy.learn_spring_project.spring_aop;import org.springframework.stereotype.Service;/*** ClassName SpringAopUserServi…...

Baumer工业相机堡盟工业相机如何通过BGAPISDK设置相机的固定帧率(C#)

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C#) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...

js拼接字符串

在js中,你可以使用字符串拼接的方式创建新的字符串。 下面是一些常用的方法: 1、使用运算符: var str1 "Hello"; var str2 "World"; var result str1 " " str2; console.log(result); // 输出&#xf…...

神经网络基础-神经网络补充概念-37-其他正则化方法

概念 L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。 L2 正则化(Ridge Regularization&…...

掌握Python的X篇_36_定义类、名称空间

本篇将会重新回到python语法的主线,并且开展新的篇章,那就是面向对象的编程。 文章目录 1. 面向对象2. 定义类3. 类的名称空间性质 1. 面向对象 面向对象是一种编程的思想,并不是限制在某一种语言上的,不同语言面向对象的表达能力…...

回归预测 | MATLAB实现GRU门控循环单元多输入多输出

回归预测 | MATLAB实现GRU门控循环单元多输入多输出 目录 回归预测 | MATLAB实现GRU门控循环单元多输入多输出预测效果基本介绍程序设计往期精彩参考资料 预测效果 基本介绍 MATLAB实现GRU门控循环单元多输入多输出,数据为多输入多输出预测数据,输入10个…...

数据结构--拓扑排序

数据结构–拓扑排序 AOV⽹ A O V ⽹ \color{red}AOV⽹ AOV⽹(Activity On Vertex NetWork&#xff0c;⽤顶点表示活动的⽹)&#xff1a; ⽤ D A G 图 \color{red}DAG图 DAG图&#xff08;有向⽆环图&#xff09;表示⼀个⼯程。顶点表示活动&#xff0c;有向边 < V i , V j …...

算法竞赛备赛之搜索与图论训练提升,暑期集训营培训

目录 1.DFS和BFS 1.1.DFS深度优先搜索 1.2.BFS广度优先搜索 2.树与图的遍历&#xff1a;拓扑排序 3.最短路 3.1.迪杰斯特拉算法 3.2.贝尔曼算法 3.3.SPFA算法 3.4.多源汇最短路Floy算法 4.最小生成树 4.1.普利姆算法 4.2.克鲁斯卡尔算法 5.二分图&#xff1a;染色法…...

Linux驱动入门(6.2)按键驱动和LED驱动 --- 将逻辑电平与物理电平分离

前言 &#xff08;1&#xff09;在学习完Linux驱动入门&#xff08;6&#xff09;LED驱动—设备树之后&#xff0c;我们发现一个问题&#xff0c;设备树明明的gpios信息明明有三个元素gpios <&gpio5 3 GPIO_ACTIVE_LOW>; &gpio5 3 用来确定控制那个引脚&#xf…...

CentOS系统环境搭建(十四)——CentOS7.9安装elasticsearch-head

centos系统环境搭建专栏&#x1f517;点击跳转 关于node的安装请看上一篇CentOS系统环境搭建&#xff08;十三&#xff09;——CentOS7安装nvm&#xff0c;&#x1f517;点击跳转。 CentOS7.9安装elasticsearch-head 文章目录 CentOS7.9安装elasticsearch-head1.下载2.解压3.修…...

设计HTML5图像和多媒体

在网页中的文本信息直观、明了&#xff0c;而多媒体信息更富内涵和视觉冲击力。恰当使用不同类型的多媒体可以展示个性&#xff0c;突出重点&#xff0c;吸引用户。在HTML5之前&#xff0c;需要借助插件为网页添加多媒体&#xff0c;如Adobe Flash Player、苹果的QuickTime等。…...

基于YOLOv8模型和Caltech数据集的行人检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要 基于YOLOv8模型和Caltech数据集的行人检测系统可用于日常生活中检测与定位行人&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集…...

Flutter 宽高自适应

在Flutter开发中也需要宽高自适应&#xff0c;手动写一个工具类&#xff0c;集成之后在像素后面直接使用 px或者 rpx即可。 工具类代码如下&#xff1a; import dart:ui;class HYSizeFit {static double screenWidth 0.0;static double screenHeight 0.0;static double phys…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...