AI夏令营第三期 - 基于论文摘要的文本分类与关键词抽取挑战赛笔记
赛题:基于论文摘要的文本分类与关键词抽取
背景:高效的从海量医学文献中提取疾病诊断和治疗关键信息
任务:通过论文摘要判断论文是否为医学文献 样例
数据集:csv文件,字段:标题、作者、摘要、关键词
评价指标:F1_score
解题思路:文本分类任务
思路一:特征提取+机器学习
数据预处理->特征提取->构建训练集和测试集->模型训练和评估->调参优化
数据预处理: 文本清洗(去除特殊字符、标点符号)
分词
NLP工具包(NLTK\spaCy)
特征提取: 文本转换为向量表示
TF-IDF(词频-逆文档频率):计算文本中词语的重要性
BOW(词袋模型):统计词语在文本中的出现次数
使用scikit-learn库的TfidfVectorizer或CountVectorizer来实现
构建训练集和测试集:分割预处理后的数据
模型训练和评估:训练集训练模型,测试集评估结果
调参优化:调整参数
机器学习baseline:
LogisticRegression模型
实则为一个线性分类器,通过 Logistic 函数(或
Sigmoid 函数),将数据特征映射到0~1区间的一个概率值(样本属于正例的可能性),通过与 0.5 的比对得出数据所属的分类(二分类)。逻辑回归的数学表达式为:
使用 sklearn.linear_model.LogisticRegression 来调用已实现的逻辑回归模型
Pandas:Python 语言的一个扩展程序库,用于数
据分析,基础是Numpy
scikit-learn:内部封装了多种机器学习算法与数据处理算法,提供了包括数据清洗、数据预处理、建模调参、数据验证、数据可视化的全流程功能
特征提取:
即从训练数据的特征集合中创建新的特征子集的过程。
提取出来的特征子集特征数一般少于等于原特征数,但能够更好地表征训练数据的情况,使用提取出的特征子集能够取得更好的预测效果。
训练数据的每一个维度称为一个特征
可以使用 sklearn 库中的 feature_extraction 包来实现文本与图片的特征提取。
在 NLP 任务中,特征提取一般需要将自然语言文本转化为数值向量表示,常见的方法包括基于 TF-IDF(词频-逆文档频率)提取或基于 BOW(词袋模型)提取
TF-IDF(term frequency–inverse document frequency):一种用于信息检索与数据挖掘的常用加权技术
TF 指 term frequence,即词频,指某个词在文章中出现次数与文章总词数的比值
IDF 指 inverse document frequence,即逆文档频率,指包含某个词的文档数占语料库总文档数的比例的倒数。
每个词最终的 IF-IDF 即为 TF 值乘以 IDF 值。计算出每个词的 TF-IDF 值后,使用 TF-IDF 计算得到的数值向量替代原文本即可实现基于 TF-IDF 的文本特征提取。
使用sklearn.feature_extraction.text 中的 TfidfVectorizer 类来简单实现文档基于 TF-IDF 的特征提取
BOW(Bag of Words)是一种常用的文本表示方法,其基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。
使用 sklearn.feature_extraction.text 中的 CountVectorizer 类来简单实现文档基于频数统计的 BOW 特征提取
停用词(Stop Words)是自然语言处理领域的一个重要工具,通常被用来提升文本特征的质量,或者降低文本特征的维度。
忽略一些不能提供有价值的信息作用的词语
划分数据集:训练集、验证集、预测集
同分布采样划分训练集和验证集
交叉验证,即对于一个样本总量为 T 的数据集,我们一般随机采样 10%~20%(也就是 0.1T~0.2T 的样本数)作为验证集,而取其他的数据为训练集。
使用 sklearn.model_selection 中的 train_test_split 函数便捷实现数据集的划分
选择机器学习模型:
- sklearn.linear_model:线性模型,如线性回归、逻辑回归、岭回归等
- sklearn.tree:树模型,一般为决策树
- sklearn.neighbors:最近邻模型,常见如 K 近邻算法
- sklearn.svm:支持向量机
- sklearn.ensemble:集成模型,如 AdaBoost、GBDT等
先实例化一个模型对象,再使用 fit 函数拟合训练数据,最后使用 predict 函数预测测试数据
数据探索:
使用pandas读取数据
利用pd.read_csv()方法对赛题数据进行读取,读取后返回一个DataFrame 数据
数据清洗:
数据和特征决定了机器学习的上限
数据清洗的作用是利用有关技术如数理统计、数据
挖掘或预定义的清理规则将脏数据转化为满足数据质量要求的数据。主要包括缺失值处理、异常值处理、数据分桶、特征归一化/标准化等流程。
由于表格中存在较多列,我们将这些列的重要内容组合在一起生成一个新的列方便训练
如果数据集中某行缺少title author abstract中的内容,我们需要利用fillna()来保证不会出现报错。
特征工程:
把原始数据转变为模型训练数据的过程,目的是获取更好的训练数据特征。比如BOW
模型训练与验证:
模型的选择决定结果的上限, 如何更好的去达到模型上限取决于模型的调参。
结果输出:
输出格式结果
改进1:使用TF-IDF,提高到0.76324
from sklearn.feature_extraction.text import TfidfVectorizervector = TfidfVectorizer().fit(train['text'])
改进2:添加停用词,下降到0.75911
stops =[i.strip() for i in open(r'stop.txt',encoding='utf-8').readlines()]
改进3:去掉author,更换模型RidgeClassifier()下降到0.73032
train['text'] = train['title'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' + test['abstract'].fillna('')
model = RidgeClassifier()
相关文章:

AI夏令营第三期 - 基于论文摘要的文本分类与关键词抽取挑战赛笔记
赛题:基于论文摘要的文本分类与关键词抽取 背景:高效的从海量医学文献中提取疾病诊断和治疗关键信息 任务:通过论文摘要判断论文是否为医学文献 样例 数据集:csv文件,字段:标题、作者、摘要、关键词 评价指…...

使用qsqlmysql操作mysql提示Driver not loaded
环境: win10 IDE: qt creator 编译器: mingw32 这里简单的记录下。我遇到的情况是在IDE使用debug和release程序都是运行正常,但是当我编译成发布版本之后。老是提示Driver not load。 这就很奇诡了。 回顾了下编译的时候是需要在使用qt先编译下libqsqlmysql.dll的…...

Java云原生框架Quarkus初探
Java云原生框架Quarkus初探 Quarkus 介绍 Quarkus 是一个云原生,容器优先的Java应用框架,它号称是超音速和亚原子的框架,主要特点是构建速度、启动速度快和占用资源少等特点。它为OpenJDK HotSpot和GraalVM量身定制, 根据Java库和…...

ElasticSearch相关概念
文章目录 前提倒排索引MySQL、ES的区别和关联IK分词器索引库mapping属性索引库的crud 文档的crudRestClientDSL查询DSL 查询种类DSL query 基本语法 搜索结构处理排序分页高亮RestClient 前提 开源的搜索引擎,从海量数据中快速找到需要的内容。(分词检索…...

微服务实战项目-学成在线-项目部署
微服务实战项目-学成在线-项目部署 1 什么是DevOps 一个软件的生命周期包括:需求分析阶、设计、开发、测试、上线、维护、升级、废弃。 通过示例说明如下: 1、产品人员进行需求分析 2、设计人员进行软件架构设计和模块设计。 3、每个模块的开发人员…...
封装form表单
目录 1. 源码 2. 其他页面引用 ps:请看完看明白再复用 1. 源码 <template><div style"width: 100%; height: 100%" class"form-condition"><!-- 普通表单 --><el-card shadow"hover" class"cardheigh…...

程序员如何利用公网远程访问查询本地硬盘【内网穿透】
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想,就是为了理想的生活! 公网远程访问本地硬盘文件【内网穿透】 文章目录 公网远程访问本地硬盘文件【内网穿透】前言1. 下载cpolar和Everything软件1.…...
算法|Day42 动态规划10
LeetCode 121.买卖股票的最佳时机 题目链接:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock/description/ 题目描述:给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天…...

vmalert集成钉钉告警
vmalert通过在alert.rules中配置告警规则实现告警,告警规则语法与Prometheus兼容,依赖Alertmanager与prometheus-webhook-dingtalk实现钉钉告警,以下步骤: 1、构建vmalert 从源代码构建vmalert: git clone https://…...
深入解析 MyBatis 中的 <foreach> 标签:优雅处理批量操作与动态 SQL
在当今的Java应用程序开发中,数据库操作是一个不可或缺的部分。MyBatis作为一款颇受欢迎的持久层框架,为我们提供了一种优雅而高效的方式来管理数据库操作。在MyBatis的众多特性中,<foreach>标签无疑是一个强大的工具,它使得…...

LeGO-Loam代码解析(二)--- Lego-LOAM的地面点分离、聚类、两步优化方法
1 地面点分离剔除方法 1.1 数学推导 LeGO-LOAM 中前端改进中很重要的一点就是充分利用了地面点,那首先自然是提取 对地面点的提取。 如上图,相邻的两个扫描线束的同一列打在地面上如 点所示,他们的垂直高度差 ,水平距离差 ,计算垂直高度差和水平高度差…...

程序员如何利用公网打造低成本轻量化的搜索和下载平台【内网穿透】
🎬 鸽芷咕:个人主页 🔥 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想,就是为了理想的生活! 公网远程访问本地硬盘文件【内网穿透】 文章目录 公网远程访问本地硬盘文件【内网穿透】前言1. 下载cpolar和Everything软件1.…...

构建可远程访问的企业内部论坛
文章目录 前言1.cpolar、PHPStudy2.Discuz3.打开PHPStudy,安装网页论坛所需软件4.进行网页运行环境的构建5.运行Discuz网页程序6.使用cpolar建立穿透内网的数据隧道,发布到公网7.对云端保留的空白数据隧道进行配置8.Discuz论坛搭建完毕 前言 企业在发展…...
2023河南萌新联赛第(六)场:河南理工大学-C 旅游
2023河南萌新联赛第(六)场:河南理工大学 https://ac.nowcoder.com/acm/contest/63602/C 文章目录 2023河南萌新联赛第(六)场:河南理工大学题意解题思路代码 题意 小C喜欢旅游,现在他要去DSH旅…...
C语言 常用工具型API ----------strchr()
函数原型 char *strchr(const char *str, int c) 参数 str-- 要被检索的 C 字符串。 c-- 在 str 中要搜索的字符。 功能 在参数str所指向的字符串中搜索第一次出现字符c(一个无符号字符)的位置 头文件 #include <string.h> 返回值 返回一…...
建造者模式的理论与实现
本文实践代码仓库:https://github.com/goSilver/my_practice 文章目录 一、定义二、作用三、实现四、总结 一、定义 建造者模式是一种创建复杂对象的设计模式。它将一个复杂对象的构建过程分解为多个简单的步骤,并且允许按照特定的顺序来构建对象。通过…...

非计算机科班如何顺利转码进入计算机领域?
文章目录 如何规划才能实现转码?计算机岗位发展前景?现阶段转码 总结 🎉欢迎来到Java学习路线专栏~探索非计算机科班如何顺利转码进入计算机领域 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博客dz…...

【C++类和对象】类有哪些默认成员函数呢?(下)
文章目录 一、类的6个默认成员函数二、日期类的实现2.1 运算符重载部分2.2 日期之间的运算2.3 整体代码1.Date.h部分2. Date.cpp部分 三. const成员函数四. 取地址及const取地址操作符重载扩展内容 总结 ヾ(๑╹◡╹)ノ" 人总要为过去的懒惰而付出代价ヾ(๑╹◡…...

springboot自定义banner的输出与源码解析
文章目录 一、介绍二、演示环境三、自定义banner1. 文本2. 图片3. placeholder占位符4. 关闭banner 四、源码分析1. 关闭banner2. banner模式3. banner打印器4. 打印banner① 获取banner② 打印banner 5. 版本号占位符的解析器6. 文本格式占位符的解析器7. 应用标题占位符的解析…...

LeetCode 141.环形链表
文章目录 💡题目分析💡解题思路🔔接口源码💡深度思考❓思考1❓思考2 题目链接👉 LeetCode 141.环形链表👈 💡题目分析 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中…...

第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...