LSTM模型
目录
LSTM模型
LSTM结构图
LSTM的核心思想
细胞状态
遗忘门
输入门
输出门
RNN模型
LRNN
LSTM模型
什么是LSTM模型
LSTM (Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象.同时LSTM的结构更复杂,它的核心结构可以分为四个部分去解析:
●遗忘门
●输入门
●细胞状态
●输出门
LSTMs也具有这种链式结构,但是它的重复单元不同于标准RNN网络里的单元只有一个网络层,它的内部有四个网络层。LSTMs的结构如下图所示。
LSTM结构图
LSTM之所以能够解决RNN的长期依赖问题,是因为LSTM引入了门(gate)机制用于控制特征的流通和损失。可以做到在tn时刻提取到ti时刻的特征。
在解释LSTMs的详细结构时先定义一下图中各个符号的含义,符号包括下面几种:
每个黄色方框表示一个神经网络层,由权值,偏置以及激活函数组成;每个粉色圆圈表示元素级别操作;箭头表示向量流向;相交的箭头表示向量的拼接;分叉的箭头表示向量的复制。
LSTM的核心思想
相比于原始的RNN的隐层(hidden state), LSTM增加了一个细胞状态(cell state),我下面把lstm中间一个时刻t的输入输出标出来:
我们可以先把中间那一坨遮起来,看一下LSTM在t时刻的输入与输出,首先,输入有三个:细胞状态Ct-1,隐层状态ht-1,t时刻输入向量Xt,而输出有两个:细胞状态Ct,隐层状态ht,其中ht 还作为t时刻的输出。
细胞状态
LSTMs的核心是细胞状态,用贯穿细胞的水平线表示。细胞状态像传送带一样。它贯穿整个细胞却只有很少的分支,这样能保证信息不变的流过整个RNNs。细胞状态如下图所示:
LSTM网络能通过一种被称为门的结构对细胞状态进行删除或者添加信息。门能够有选择性的决定让哪些信息通过。其实门的结构很简单,就是一个sigmoid层和一个点乘操作的组合。如下图所示:
因为sigmoid层的输出是0-1的值,这代表有多少信息能够流过sigmoid层。0表示都不能通过,1表示都能通过。
前面提到LSTM由三个门来控制细胞状态,这三个门分别称为忘记门、输入门和输出门。下面一个一个的来讲述。
遗忘门
LSTM的第一步就是决定细胞状态需要丢弃哪些信息。这部分操作是通过一个称为忘记门的sigmoid单元来处理的。它通过查看Xt和ht-1信息来输出一个0-1之间的向量,该向量里面的0-1值表示细胞状态Ct-1中的哪些信息保留或丢弃多少。0表示不保留,1表示都保留。忘记门如下图所示。
首先说一下[ h t − 1 , x t ] 这个东西就代表把两个向量连接起来(操作与numpy.concatenate相同)
输入门
下一步是决定给细胞状态添加哪些新的信息。这一步又分为两个步骤,
首先,利用ht-1和Xt通过一个称为输入门的操作来决定更新哪些信息。然后利用ht-1和Xt通过一个tanh层得到新的候选细胞信息Ct~,这些信息可能会被更新到细胞信息中。这两步描述如下图所示。
下面将更新旧的细胞信息Ct-1,变为新的细胞信息Ct。更新的规则就是通过忘记门选择忘记旧细胞信息的一部分,通过输入门选择添加候选细胞信息Ct~的一部分得到新的细胞信息Ct。更新操作如下图所示
输出门
更新完细胞状态后需要根据输入的ht-1和Xt来判断输出细胞的哪些状态特征,这里需要将输入经过一个称为输出门的sigmoid层得到判断条件,然后将细胞状态经过tanh层得到一个-1~1之间值的向量,该向量与输出门得到的判断条件相乘就得到了最终该RNN单元的输出。该步骤如下图所示:
RNN模型
LRNN
【LSTM长短期记忆网络】3D模型一目了然,带你领略算法背后的逻辑_哔哩哔哩_bilibili
相关文章:

LSTM模型
目录 LSTM模型 LSTM结构图 LSTM的核心思想 细胞状态 遗忘门 输入门 输出门 RNN模型 LRNN LSTM模型 什么是LSTM模型 LSTM (Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象.同时LS…...
抢红包小程序
抢红包小程序 红包大战 # urls.pyfrom django.urls import pathfrom . import viewsurlpatterns [ path(login/, views.login, namelogin), path(create_red_packet/, views.create_red_packet, namecreate_red_packet), path(join_red_packet/<int:red_packet_id…...
UVA 10006 埃氏筛法+快速幂
本题目使用费马定理时,我随机定义了10个数字,循环用费马小定理判断,数组中的值不用和我的相同,随机即可。 #include <iostream> using namespace std; typedef unsigned long long ll; bool isPrime[65007]; ll a[10]; voi…...

C++--红黑树
1.什么是红黑树 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因…...

Unity 找不到 Navigation 组件的解决
当我们想利用unity 里面的Navigation 组件来实现我们的物体的自动导航时,有时竟然会发现我们的菜单栏里面找不到 该组件 这时我们应该怎么办? 请确保你的项目中已经导入了Unity的AI模块。要导入该模块,请打开"Project Settings"&am…...
【js】时间和时间戳转换、日期格式化
1、时间戳转换日期方法 (格式:2023-08-17) function timestampToDate(date) {var date new Date(date);var YY date.getFullYear() -;var MM (date.getMonth() 1 < 10 ? 0 (date.getMonth() 1) : date.getMonth() 1) -;var DD …...
glog体验第一天(0)glog介绍和安装
在Ubuntu上安装glog,可以按照以下步骤进行操作: 打开终端,使用以下命令更新本地软件包列表: sudo apt-get update然后,使用以下命令安装glog库及其开发工具: sudo apt-get install -y libgoogle-glog-de…...
Android 13像Settings一样获取SIM卡信息
一.背景 由于客户定制的Settings里面需要获取到SIM卡信息,所以需要实现此功能。 目录 一.背景 二.前提条件 三.调用api 二.前提条件 首先应用肯定要是系统应用,并且导入framework.jar包,具体可以参考: Android 应用自动开启辅助(无障碍)功能并使用辅助(无障碍)功能_…...

Can‘t find end of central directory : is this a zip file ? at XMLHttpRequest
导出woed出现这个报错,原因其实很简单,路径写错了, 这个word首先必须是docx格式,然后必须放在public文件包下 如果放在public文件包下还没有用,则放在public包下 参考帖子: https://www.cnblogs.com/hejun26/p/13647927.html...

基于SpringBoot+Thymeleaf仓库管理系统
✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 随着信息技术的快速发…...

ubuntu20.04磁盘满了 /dev/mapper/ubuntu--vg-ubuntu--lv 占用 100%
问题 执行 mysql 大文件导入任务,最后快完成了,查看结果发现错了!悲催!都执行了 两天了 The table ‘XXXXXX’ is full ? 磁盘满了? 刚好之前另一个 centos 服务器上也出现过磁盘满了,因此&a…...

【制作npm包4】api-extractor 学习
制作npm包目录 本文是系列文章, 作者一个橙子pro,本系列文章大纲如下。转载或者商业修改必须注明文章出处 一、申请npm账号、个人包和组织包区别 二、了解 package.json 相关配置 三、 了解 tsconfig.json 相关配置 四、 api-extractor 学习 五、npm包…...
神经网络基础-神经网络补充概念-52-正则化网络的激活函数
概念 正则化是一种用于减少过拟合(overfitting)的技术,可以在神经网络的各个层次中应用,包括激活函数。激活函数的正则化主要目的是减少神经网络的复杂度,防止网络在训练集上过度学习,从而提高泛化能力。 …...
代码随想录训练营day56| 583. 两个字符串的删除操作 72. 编辑距离
TOC 前言 代码随想录算法训练营day56 一、Leetcode 583. 两个字符串的删除操作 1.题目 给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。 每步 可以删除任意一个字符串中的一个字符。 示例 1: 输入: word1 "sea",…...
神经网络基础-神经网络补充概念-55-为什么是ML策略
“ML策略”(Machine Learning Strategies)是指在解决机器学习问题时,采取的一系列方法、技巧和策略。选择适当的ML策略对于获得高质量的模型和结果非常重要。以下是为什么要考虑ML策略的一些原因: 问题适应性:不同的机…...

C++初阶语法——内部类
前言:内部类,顾名思义是定义在类中的类,许多人会以为它属于外部的类,实际上并不是,它们是两个独立的类,但是内部类受外部类类域的限制。 目录 一.概念二.特性1.内部类和外部类相互独立2.内部类是外部类的友…...
Java基础(十四)面向对象编程 OOP 多态
Java面向对象基础知识笔记(四) 1. 对象数组的使用 在Java中,我们可以创建包含对象的数组。对象数组是一种特殊类型的数组,其中每个元素都是一个对象的引用。你可以将任何类的对象存储在对象数组中,并通过索引来访问和操…...

【Android】解决Lint found fatal errors while assembling a release target
报错信息: Android在debug模式下打包没有问题,但是在打包release版本时出现一下问题: 结果图 原因 我项目的原因是因为把正式、测试地址放到代码里了,忘记选中正式环境的地址,导致打正式包有问题;大家如果…...
CF1195E OpenStreetMap 题解
很好的单调队列题。 题目传送门 题目意思: 给定一个 n m n\times m nm 的矩阵,求出所有大小为 a b a\times b ab 的子矩形中的最小值的和。 思路: 通过题目给的要求建立二维数组 h h h。通过单调队列一行一行地扫,将扫出来…...
微信营销系统如何使用效果会更好
微信作为中国最大的社交平台之一,已经成为企业私域营销的重要阵地。在这个庞大的社交网络中,如何使用微信营销系统,将直接影响到企业的营销效果。本文将深入探讨如何更好地利用微信营销系统,以实现更好的私域营销效果。 1. 确定营…...

Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...

对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...