论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks
Imperceptible Adversarial Attack via Invertible Neural Networks
作者:Zihan Chen, Ziyue Wang, Junjie Huang*, Wentao Zhao, Xiao Liu, Dejian Guan
解决的问题:虽然视觉不可感知性是对抗性示例的理想特性,但传统的对抗性攻击仍然会产生可追踪的对抗扰动。
代码:https://github.com/jjhuangcs/AdvINN
类型:黑盒 目标攻击,
摘要:
作者利用可逆神经网络(AdvINN)方法进行对抗性攻击,生成鲁棒且难以察觉的对抗性示例。AdvINN利用INN的信息保留属性,添加目标类的指定信息、删除与原始类别不同的信息来生成对抗样本。
引言部分引出对抗攻击示例
虽然对抗样本的存在可能会阻碍深度学习在风险敏感领域的应用,但它进一步促进了对深度学习鲁棒性的研究。
现有对抗样本的类别:
- 在原始图像上添加扰动来生成对抗样本:FGSM系列的对抗攻击方法+混合其他类别的信息来生成对抗样本,这种方法可能会导致噪声被感知和图像存储容量的增加;
- 在原始图像上丢弃部分信息来生成对抗样本,这种方法可能会影响目标攻击的性能。
方法整体概述
给定一张良性图像 x c l n x_{cln} xcln,其标签为 c c c,作者的目标是通过丢弃类 c c c的discriminant information和添加target image x t g t x_{tgt} xtgt的对抗细节,同时能够通过残差图像 x r x_r xr解析添加和丢弃的特征信息。方案整体包含Invertible Information Exchange Module (IIEM)和目标图像选择和学习(Target image selection and learning)两个模块,整体概述如下图所示:
- IIEM模块: θ \theta θ是 f θ ( ⋅ ) {f_\theta }({\cdot}) fθ(⋅)的参数,由Invertible Information Exchange Module (IIEM), Target Image Learning Module (TILM) 和loss functions三个模块组成用于优化;IIEM由损失函数驱动,通过执行 x c l n {x_{cln }} xcln和 x t g t {x_{tgt}} xtgt的信息交换来生成对抗图像。由于IIEM的保留属性,输入图像 ( x c l n , x t g t ) ({x_{cln}},{x_{tgt}}) (xcln,xtgt)和输出图像 ( x a d v , x r ) ({x_{adv}},{x_{r}}) (xadv,xr)是相同的且 ( x a d v , x r ) = f θ − 1 ( x c l n , x t g t ) ({x_{adv}},{x_r})= {f_\theta }^{ - 1}({x_{cln }},{x_{tgt}}) (xadv,xr)=fθ−1(xcln,xtgt)。AdvINN生成对抗样本的目标函数定义如下:
L a d v ( ⋅ ) \mathcal{L_{adv}}( \cdot ) Ladv(⋅)表示对抗损失, L r e c ( ⋅ ) \mathcal{L_{rec}}( \cdot ) Lrec(⋅)表示重构损失, λ a d v {\lambda _{adv}} λadv 表示正则参数, ε \varepsilon ε表示对抗扰动预算。
-target image选择: target image是对抗信息的来源,可以从highest confidence target image (HCT)、universal adversarial perturbation (UAP)或online learned classifier guided target image( CGT)中选择;
方法详细阐述:
Invertible Information Exchange Module (IIEM)
该模块主要包括离散小波变换和仿射偶尔两个模块,示意图如下:
- 离散小波变换:作者使用离散小波变换(正文使用的是哈儿小波变换)用以区分输入干净和目标图像分解为低频和高频成分。分解低频和高频特征有助于修改输入图像的高频成分,因而可以产生更不易察觉的对抗样本(注意:修改高频成分生成的对抗样本更不易被察觉。)离散小波变换 T ( ⋅ ) \mathcal{T}(\cdot) T(⋅)中,输入图像 x x x可被转换成小波域 T ( x ) \mathcal{T}(x) T(x),该域上包含一个低频子带特征和3个高频子带特征。在IIEM的输出端,逆离散小波变换 T − 1 ( ⋅ ) {\mathcal{T}^{-1}}( \cdot ) T−1(⋅)用于重构特征到图像域。
- 仿射耦合模块:可逆信息交换模块由 M M M个Affine Coupling Blocks(仿射耦合模块)组成。 w c l n i w_{cln }^i wclni和 w t g t i w_{tgt}^i wtgti表示第 i i i个Affine Coupling Blocks的输入特征, w c l n i = T ( x c l n ) w_{cln }^i = T({x_{cln }}) wclni=T(xcln), w t g t i = T ( x t g t ) w_{tgt}^i = T({x_{tgt}}) wtgti=T(xtgt)。第 i i i个Affine Coupling Blocks的前向过程可表示为:
Θ \Theta Θ表示两个矩阵对应相乘, α \alpha α表示一个sigmod 函数乘以一个常数因子, ψ ( ⋅ ) , ρ ( ⋅ ) , η ( ⋅ ) \psi ( \cdot ),\rho ( \cdot ),\eta ( \cdot ) ψ(⋅),ρ(⋅),η(⋅)表示dense network architecture。给定第M个仿射耦合模块的输出,利用逆小波变换可获得对抗图像和残差图像: x a d v = T − 1 ( w c l n M ) , x r = T − 1 ( w t g t M ) {x_{adv}} = {T^{ - 1}}(w_{cln }^M),{x_r} = {T^{ - 1}}(w_{tgt}^M) xadv=T−1(wclnM),xr=T−1(wtgtM) - 信息保留属性:由于DWI和IDWT的可逆性, ( w c l n M , w t g t M ) (w_{cln }^M, w_{tgt}^M) (wclnM,wtgtM)可以被保存在 ( x a d v , x r ) ({x_{adv}}, {x_r}) (xadv,xr), ( w c l n i − 1 , w t g t i − 1 ) (w_{cln }^{i - 1},w_{tgt}^{i - 1}) (wclni−1,wtgti−1)可以被保存在 ( w c ln i , w t g t i ) (w_{c\ln }^{i },w_{tgt}^{i}) (wclni,wtgti)
IIEM是完全可逆,输出图像 ( x a d v , x r ) ({x_{adv}},{x_r}) (xadv,xr)和输入图像 ( x c l n , x t g t ) ({x_{cln}},{x_tgt}) (xcln,xtgt)包含相同的信息。他们之间的联系可表示如下:
σ \sigma σ表示干净图像上丢弃的信息, δ \delta δ表示添加到干净图像上目标图像的判别信息。
目标图像选择和学习(Target image selection and learning)
- 选取最高置信类的图像:选取最高置信的图像作为目标图像可能包含大量目标类的无关信息,例如背景纹理和其他的类的信息。这将会影响攻击成功率和寻优过程;
- 通用对抗扰动:作者沿用该方法,利用优化后的通用对抗摄动作为目标图像,加快收敛速度;
- 目标图像学习模块:该模块学习分类器引导的目标图像,而不是使用固定的图像作为目标图像。目标图像被设置为一个可学习的变量,该变量用一个恒定的图像初始化(即所有像素设置为0.5),然后根据攻击分类器的梯度进行更新。这样,自适应生成的目标图像可以嵌入目标类的更多判别信息,从而辅助生成对抗样例。
学习细节
整个网络的总体损失定义如下:
L a d v {\mathcal{L}_{adv}} Ladv表示对抗损失用于定位正确的优化方向和加速收敛速度,
+消融实验
相关文章:

论文阅读——Imperceptible Adversarial Attack via Invertible Neural Networks
Imperceptible Adversarial Attack via Invertible Neural Networks 作者:Zihan Chen, Ziyue Wang, Junjie Huang*, Wentao Zhao, Xiao Liu, Dejian Guan 解决的问题:虽然视觉不可感知性是对抗性示例的理想特性,但传统的对抗性攻击仍然会产…...

List和ObservableCollection和ListBinding在MVVM模式下的对比
List和ObservableCollection和ListBinding在MVVM模式下的对比 List 当对List进行增删操作后,并不会对View进行通知。 //Employee public class Employee : INotifyPropertyChanged {public event PropertyChangedEventHandler? PropertyChanged;public string N…...

insightface安装过程中提示 Microsoft Visual C++ 14.0 or greater is required.
pip install insightface安装过程中提示 Microsoft Visual C 14.0 or greater is required.Get it with "Microsoft C Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/ 根据提示网站访问官网下载生成工具 打开软件后会自动更新环境&#…...

mongodb数据库
目录 一、数据库 二、文档 三、集合 四、元数据 五、MongoDB 数据类型 1、ObjectId 2、字符串 3、时间戳 4、日期 一、数据库 一个 mongodb 中可以建立多个数据库。 MongoDB 的默认数据库为"db",该数据库存储在 data 目录中。 MongoDB 的单…...

OpenCV-Python中的图像处理-图像特征
OpenCV-Python中的图像处理-图像特征 图像特征Harris角点检测亚像素级精度的角点检测Shi-Tomasi角点检测SIFT(Scale-Invariant Feature Transfrom)SURF(Speeded-Up Robust Features)FAST算法BRIEF(Binary Robust Independent Elementary Features)算法ORB (Oriented FAST and R…...

Ajax入门+aixos+HTTP协议
一.Ajax入门 概念:AJAX是浏览器与服务器进行数据通信的技术 axios使用: 引入axios.js使用axios函数:传入配置对象,再用.then回调函数接受结果,并做后续处理 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>01.axios使用…...
conda创建虚拟环境
创建虚拟环境是在计算机上设置一个独立的空间,用于安装和运行特定版本的软件和依赖项,以避免与系统其他部分的冲突。 创建虚拟环境: conda create --name myenv python3.8 这将创建一个名为myenv的虚拟环境,并安装Python 3.8版本。…...

Golang服务的请求调度
文章目录 1. 写在前面2. SheddingHandler的实现原理3. 相关方案的对比4. 小结 1. 写在前面 最近在看相关的Go服务的请求调度的时候,发现在gin中默认提供的中间件中,不含有请求调度相关的逻辑中间件,去github查看了一些服务框架,发…...
Jenkins的流水线启动jar后未执行问题处理
现象 在流水线里配置了启动脚本例如,nohup java -jar xxx.jar >nohup.out 2>&1 & 但是在服务器发现服务并未启动,且nohup日志里没输出日志,这样的原因是jenkins在执行完脚本后,就退出了这个进程。 在启动脚本执行jar命令的上一步加入以下…...

智慧工地平台工地人员管理系统 可视化大数据智能云平台源码
智慧工地概述: 智慧工地管理平台是以物联网、移动互联网技术为基础,充分应用大数据、人工智能、移动通讯、云计算等信息技术,利用前端信息采通过人机交互、感知、决策、执行和反馈等,实现对工程项目內人员、车辆、安全、设备、材…...

外包干了2个月测试,技术退步明显...
先说一下自己的情况,大专生,18年通过校招进入湖南某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...
神经网络基础-神经网络补充概念-19-向量化实现的解释
概念 向量化是一种优化技术,通过使用数组操作代替显式的循环,可以大大提高代码的性能和效率。在机器学习和数据分析领域,向量化是一种常见的实践,它允许你在处理大量数据时更快地进行计算。 一般操作 数组操作:向量…...

四层和七层负载均衡的区别
一、四层负载均衡 四层就是ISO参考模型中的第四层。四层负载均衡器也称为四层交换机,它主要时通过分析IP层和TCP/UDP层的流量实现的基于“IP端口”的负载均衡。常见的基于四层的负载均衡器有LVS、F5等。 以常见的TCP应用为例,负载均衡器在接收到第一个来…...

Scala 如何调试隐式转换--隐式转换代码的显示展示
方法1 在需要隐式转换的地方,把需要的参数显示的写出。 略方法2,查看编译代码 在terminal中 利用 scalac -Xprint:typer xxx.scala方法打印添加了隐式值的代码示例。 对于复杂的工程来说,直接跑到terminal执行 scalac -Xprint:typer xxx.…...
Rust交叉编译简述 —— Arm
使用系统:WSL2 —— Kali(Microsoft Store) 命令列表 rustup target list # 当前官方支持的构建目标架构列表 rustup target add aarch64-unknown-linux-gnu # 添加目标架构sudo apt-get install gcc-13-aarch64-linux-gnu gcc-13-aarch64-linux-gnu # 下载目标工具…...

算法与数据结构(二十三)动态规划设计:最长递增子序列
注:此文只在个人总结 labuladong 动态规划框架,仅限于学习交流,版权归原作者所有; 也许有读者看了前文 动态规划详解,学会了动态规划的套路:找到了问题的「状态」,明确了 dp 数组/函数的含义&a…...

相机的位姿在地固坐标系ECEF和ENU坐标系的转换
在地球科学和导航领域,通常使用地心地固坐标系(ECEF,Earth-Centered, Earth-Fixed)和东北天坐标系(ENU,East-North-Up)来描述地球上的位置和姿态。如下图所示: 地心地固坐标ecef和…...

RFID技术助力汽车零配件装配产线,提升效率与准确性
随着科技的不断发展,越来越多的自动化设备被应用到汽车零配件装配产线中。其中,射频识别(Radio Frequency Identification,简称RFID)技术凭借其独特的优势,已经成为了这一领域的重要技术之一。本文将介绍RF…...
应用高分辨率 GAN 对扰动文档图像去扭曲的深度Python实践
1. 引言 随着技术的不断发展,图像处理在各种场景中的应用也变得越来越广泛。高分辨率 GAN (Generative Adversarial Network) 是近年来图像处理领域的热点技术,它能够生成极高分辨率的图像,与此同时,它也可以用于各种修复和增强任…...
【BASH】回顾与知识点梳理(二十六)
【BASH】回顾与知识点梳理 二十六 二十六. 二十一至二十五章知识点总结及练习26.1 总结26.2 模拟26.3 简答题 该系列目录 --> 【BASH】回顾与知识点梳理(目录) 二十六. 二十一至二十五章知识点总结及练习 26.1 总结 Linux 操作系统上面,…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...